Petrographic analyses of marbles: characteristic features of deformation and fluid-related effects in the Dorozsma marble (Tisza Mega Unit, South Hungary)

  • Nikoletta Papp SZTE TTIK Department of Minearlogy, Geochemistry and Petrology, e-mail: pappnicki@gmail.com
  • Andrea Varga SZTE TTIK Department of Minearlogy, Geochemistry and Petrology https://orcid.org/0000-0002-8673-1482
  • Előd Mészáros SZTE TTIK Department of Minearlogy, Geochemistry and Petrology
  • Béla Raucsik SZTE TTIK Department of Minearlogy, Geochemistry and Petrology http://orcid.org/0000-0002-1951-5974
Keywords: Dorozsma, marble, petrography, ductile deformation, metasomatism

Abstract

Detailed petrographic studies on marbles are rare in the Hungarian geological literature. Determination of the mineral phases and their grain size, examination of the grain boundaries as well as deformation microstructures, however, can provide a comprehensive information about the metamorphic evolution and the deformation history of a marble unit.

The metamorphic basement block near the village of Dorozsma contains a few-meter-thick marble zone within the Békés‒Codru Zone. A petrographic study of archive thin sections representing this marble zone was carried out from the boreholes Dorozsma‒4, Dorozsma‒7 and Dorozsma‒54. 

The fine-grained marble samples show heteroblastic texture with a composition of carbonate + quartz + muscovite + Mg-chlorite ± talc. The carbonate crystal boundaries are dominantly sutured, embayed and rarely curved. All the morphological types of deformation twins appear in the samples, but dominantly twin types II and IV are present. The characteristic features of the samples are small dissolution cavities filled with fine crystalline carbonate, blocky quartz and, in some cases, with saddle dolomite. In the samples from the borehole Dorozsma–4 small inclusion free carbonate grains substitute the deformation twins of the large carbonate crystals. In addition, small carbonate neoblasts and Mg-chlorite flakes can be found among the large carbonate crystals. Characteristic microstructures of the samples from the well Dorozsma–7 are large sigmoid carbonate clasts in a very fine-grained matrix. The deformation twins of the carbonate clasts can be easily identified and show the signs of recrystallization. These samples beside the carbonate clasts also contain irregularly shaped polycrystalline quartz grains with dissolved edges, undulose extinction and signs of incipient dynamic recrystallization.

The microstructures presented above suggest a polyphase deformation. The D1 deformation event took place above 250 °C based on the relict microstructures. The subsequent D2 ductile deformation event was a low-temperature dynamic recrystallization with a simple shear component, which could be the result of a hydrolitic weakening effect of hydrothermal fluids during deformation of the Dorozsma marble.

References

ABU-JABER, N., AL-SAAD, Z., SHIYYAB, A. & DEGRYSE, P. 2012: Provenance of white marbles from the Nabatean sites of Qasr al Bint and the collonaded street baths at Petra, Jordan. Mediterranean Archaeology and Archaeometry 12/1, 21-29.
AL-BASHAIREH, K. & AL-HOUSAN, A., Q. 2015: Provenance investigation of white marbles of chancel screens from Rihab Byzantine churches, northeast Jordan. Journal of Cultural Heritage 16, 591-596. https://doi.org/10.1016/j.culher.2014.10.002
ANTONELLI, F., LAPUENTE, M. P., DESSANDIER, D. & KAMEL, S. 2015: Petrographic characterization and provenance determination of the crystalline marbles used in the roman city of Banasa (Morocco): New data on the import of Iberian marbles in roman North Africa. Archeometry 57, 405-425. https://doi.org/10.1111/arcm.12099
ÁRKAI, P., BÉRCZI-MAKK, A. & HAJDÚ, D. 1998: Alpine prograde and retrograde metamorphisms in an overthrusted part of the basement, Great Plain, Pannonian Basin, Eastern Hungary. - Acta Geologica Hungarica 41/2, 179‒210.
BALINTONI, I., PUȘTE, A. & STAN, R., 1996: The Codru nappe system and the Biharia Nappe System: A comparative argumentation. — Studia Universitatis Babeș‐Bolyai, Geologia 41, 101–113.
BALLA, Z. & KOROKNAI, B. 2009: Alsó-Paleozoikum, Ófalui Formációcsoport. — In: Balla, Z. & Gyalog, L.: A Mórágyi-rög északkeleti részének földtana. Magyar Állami Földtani Intézet, Budapest, 283 p.
BARBER, D. J. & WENK, H. R. 1979: Deformation twinning in calcite, dolomite, and other rhombohedral carbonates. Physics and Chemistry of Minerals 5, 141-165. https://doi.org/10.1007/bf00307550
BARKER, A. J. 1998: Introduction to Metamorphic Textures and Microstructures. Stanley Thornes Ltd, Cheltenham, 263 p. https://doi.org/10.4324/9781315831626
BÉRCZI-MAKK, A. 1986: Mesozoic formation types of the Great Hungarian Plain. Acta Geologica Hungarica 29, 261‒282.
BÉRCZINÉ MAKK, A., KONRÁD, GY., RÁLISCHNÉ FELGENHAUER, E. & TÖRÖK, Á. 2004: Tiszai egység. — In: HAAS, J. (szerk.): Magyarország geológiája, Triász. —ELTE Eötvös Kiadó, Budapest, 384 p.
BEST, M. G. 2003: Igneous and metamorphic petrology. Blackwell Publishing, Berlin, 749 p.
BORGHI, A., VAGGELLI, G., MARCON, C. & FIORA, L. 2009: The Piedmont white marbles used in antiquity: an archeometric distinction inferred by minero-petrographic study and C-O stable isotope study. Archeometry 51, 913-931. https://doi.org/10.1111/j.1475-4754.2008.00447.x
BOULVAIS, P., DE PARSEVAL, P., D’HULST, A. & PARIS, P. 2006: Carbonate alteration associated with talc-chlorite mineralization in the eastern Pyrenees, with emphasis on the St. Barthelemy Massif. Mineralogy and Petrology 88, 499‒526. https://doi.org/10.1007/s00710-006-0124-x
BRILLI, M., GUISTINI, F., CONTE, A. M., MERCADAL, P. M., QUARTA, G., PLUMED, H. R., SCARDOZZI, G. & BELARDI, G. 2015: Petrography, geochemistry, and cathodoluminescence of ancient white marble from quarries in the southern Phrygia and northern Caria regions of Turkey: Considerations on provenance discrimination. — Journal of Archeological Sciences, Report 4, 124-142. https://doi.org/10.1016/j.jasrep.2015.08.036
BUCHER, K. & GRAPES, R. 2011: Petrogenesis of metamorphic rocks. — Springer-Verlag, Berlin, Heidelberg, 428 p. https://doi.org/10.1007/978-3-540-74169-5
BURKHARD, M. 1993: Calcite twins, their geometry, appearance and significance as stress-strain markers and indicators of tectonical regime: a review. — Journal of Structural Geology 15, 351-368. https://doi.org/10.1016/0191-8141(93)90132-t
CAPEDRI, S., VENTURELLI, G. & PHOTIADES, A. 2004: Accessory minerals and δ18O and δ 13C of marbles from the Mediterranean area. Journal of Cultural Heritage 5, 27-47. https://doi.org/10.1016/j.culher.2003.03.003
CSÁSZÁR G. 2005: Magyarország és környezetének regionális földtana I. Paleozoikum-Paleogén. — ELTE Eötvös Kiadó, Budapest, 328 p.
EBERT, A., HERWEGH, M., BERGER, A. & PFIFFNER, A. 2008: Grain coarsening maps for polymineralic carbonate mylonites: A calibration based on data from different Helvetic nappes (Switzerland). — Tectonophysics 457, 128‒142. https://doi.org/10.1016/j.tecto.2008.05.007
FERILL, D. A., MORRIS, A. P., EVANS, M. A., BURKHARD, M., GROSHONG, R. H. & ONASCH, C. M. 2004: Calcite twin morphology: a low-temperature deformation geothermometer. Journal of Structural Geology 25, 1521-1529. https://doi.org/10.1016/j.jsg.2003.11.028
FINTOR, K., SCHUBERT F. & M. TÓTH, T. 2005: Hiperszalin paleofluidum-áramlás nyomai a Baksai Komplexum repedésrendszerében. Földtani Közlöny 138/3, 257‒278.
FÜLÖP, J. 1994: Magyarország geológiája, Paleozoikum II. Akadémiai Kiadó, Budapest, 447 p.
GARAGULY, I., VARGA, A., RAUCSIK B., SCHUBERT, F., CZUPPON, GY. & HALÁSZ-SZABÓ, K. 2016: Mélybetemetődési és telogenetikus átalakulások nyomai a Szegedi Dolomit Formációban. — In: BENKÓ, ZS. 2016: Itt az idő! Kőzettani-Geokémiai folyamatok és azok geokronológiai vonatkozásai. MTA ATOMKI, Debrecen, 124 p.
GARAGULY I., RAUCSIK, B., VARGA, A. & SCHUBERT, F. 2017: Középső-triász dolomitok képződésének története és töréses deformációja a Szegedi-medence területén. — Földtani Közlöny 147/1, 39–60. https://doi.org/10.23928/foldt.kozl.2017.147.1.39
GORGONI, C., LAZZARINI, L., PALLANTE, P. & TURI, B. 1998: An updated and detailed mineropetrographic and C-O stable isotopic reference database for the main Mediterranean marbles used in antiquity. — Proceedings of the Vth ASMOSIA Conference, 1-25.
HAAS, J. & BUDAI, T. 2010: Magyarország prekainozoos medencealjzatának földtana. Magyarázó „Magyarország pre-kainozoos földtani térképéhez” (1:500 000). — Magyar Földtani és Geofizikai Intézet, Budapest, 71 p.
HAAS, J. & PÉRÓ, CS. 2004: Mesozoic evolution of the Tisza Mega-unit. — International Journal of Earth Sciences 93, 297–313. https://doi.org/10.1007/s00531-004-0384-9
HAAS, J., KOVÁCS, S., KARAMATA, S., SUDAR, M., GAWLICK, H. J., GRĂDINARU, E., MELLO, J., POLÁK, M., PÉRÓ, CS., OGORELEC, B. & BUSER, S., 2010: Jurassic environments in the Circum‐Pannonian region. — In: VOZÁR, J., EBNER, F., VOZÁROVÁ, A., HAAS, J., KOVÁCS, S., SUDAR, M., BIELIK, M., PÉRÓ, CS. (eds.), Variscan and Alpine terranes of the Circum‐Pannonian Region. Geological Institute, SAS, Bratislava. Chapter 5, 157–202.
HERWEGH, M. & JENNI, A. 2001: Granular flow in polymineralic rocks bearing sheet silicates: new evidence from natural examples. Tectonophysics 332, 309−320. https://doi.org/10.1016/s0040-1951(00)00288-2
IANOVICI, V., BORCOȘ, M., BLEAHU, M., PATRULIUS, D., LUPU, M., DIMITRESCU, R. & SAVU, H. 1976: Geology of the Apuseni Mountains. — Academia Republicii Socialiste România, București. 631 p.
IORDANIDIS, A., CHARALAMPIDES, G., GARCIA-GUINEA, J., CORRECHER, V. & KARAMITROU- MENTESSIDI, G. 2008: A preliminary provenance study of marble artefacts from Aiani, ancient upper Macedonia, Greece. Geoarchaeology and Archaeomineralogy: Proceedings of the International Conference, 103-107.
JANSSEN, C., RYBACKI, E. & DRESEN, G. 2007: Critical re-evaluation of calcite twins as a low-temperature deformation geothermometer. — Geophysical Research Abstract, 9
KARACA, Z., HACIMUSTAFAOGLU, R. & GÖKCE, M., V. 2015: Grain properties, grain-boundary interactions and their effects on the characteristics of marbles used as building stones. — Construction and Building Materials 93, 166171. https://doi.org/10.1016/j.conbuildmat.2015.05.023
KENNEDY, L. A. & LOGAN, J. M. 1998: Microstructures of cataclasites in a limestone-on-shale thrust fault: implication for low-temperature recrystallization of calcite. Tectonophysics 295, 167−186. https://doi.org/10.1016/s0040-1951(98)00119-x
KOUNOV, A. & SCHMID, S. 2013: Fission-track constraints on the thermal and tectonic evolution of the Apuseni Mountains (Romania). — International Journal of Earth Sciences 102, 207–233. https://doi.org/10.1007/s00531-012-0800-5
KOVÁCS, S., HAAS, J., CSÁSZÁR, G., SZEDERKÉNYI, T., BUDA, GY. & NAGYMAROSY, A. 2000: Tectonostratigraphic terranes in the pre-Neogene basement of the Hungarian part of the Pannonian area. Acta Geologica Hungarica 43/3, 225328.
KOROKNAI, B. 2004: Tektonometamorf fejlődés az Upponyi- és Szendrői-paleozoikumban. Doktori értekezés, 239 p.
KURZ, W., NEUBAUER, F., UNZOG, W., GENSER, J. & WANG, X. 2000: Microstructural and textural development of calcite marbles during polyphase deformation of Penninic units within the Tauern Window (Eastern Alps). Tectonophysics 316, 327−342. https://doi.org/10.1016/s0040-1951(99)00257-7
LAZZARINI, L., MOSCHINI, G. & STIEVANO, B. M. 1980: A contribution to the identification of Italian, Greek and Anatolian marbles through a petrological study and the evaluation of Ca/Sr ratio. Archaeometry 22, 173‒183. https://doi.org/10.1111/j.1475-4754.1980.tb00940.x
LIU, J., WALTER, J. M. & WEBER, K. 2002: Fluid-enhanced low-temperature plasticity of calcite marble: Microstructures and mechanisms.  Geology 30/9, 787‒790. https://doi.org/10.1130/0091-7613(2002)030<0787:feltpo>2.0.co;2
LELKES-FELVÁRI, GY., FRANK, W., SCHUSTER, R. & SASSI, R. 2005: Metamorphic history of the Algyő High (Tisza Mega-unit, basement of Great Hungarian Plain) – a counterpart of crystalline units of the Koralpe-Wölz nappe system (Austroalpine, Eastern Alps).  Acta Geologica Hungarica 48/4, 371394. https://doi.org/10.1556/ageol.48.2005.4.2
LESS, GY., KOVÁCS, S., SZENTPÉTERY, I., GRILL, J., RÓTH, L., GYURICZA, GY., SÁSDI, L., PIROS, O., RÉTI, ZS., ELSHOLZ, L., ÁRKAI, P., NAGY, E., BORKA, ZS., HARNOS, J. & ZELENKA, T. 2006: Az Aggtelek-Rudabányai-hegység földtana.  MÁFI, Budapest, 92 p.
LUPU, M., BORCOŞ, M. & DIMITRESCU, R. 1966: Nota explicativa de harta geologică a Republicii Socialiste România. Foaia 1:200.000 Turda. — Comitetul de Stat al Geologiei Institutul Geologic, București, 42 p.
MÂRZA, I. 1965: Unitatea petrografică și paleostratigrafică a masivelor de carbonaţi metamorfici: Vulturese‐Scărisoara‐Leurda (Bazinul Arieșului). — Analele Universităţii București: Seria știinţele naturii. Geologie‐Geografie 14, 9–17.
MELFOS, V., VOUDOURIS, P., PAPADOPOULOU, L., SDROLIA, S. & HELLY, B. 2010: Mineralogical, petrographic and stable isotopic study of ancient white marble quarries in Thessaly, Greece – II. Chasanbali, Tempi, Atrax, Tisaion Mountain.  Bulletin of the Geological Society of Greece XLIII/2, 845855. http://dx.doi.org/10.12681/bgsg.11250
MOENS, L., ROOS, P., DE RUDDER, J., DE PAEPE, P., VAN HENDE, J. & WAELKENS, M. 1988: A multi-method approach to the identification of white marbles used in antique artifacts.  In: HERZ, N. & WAELKENS, M. (eds.): Classical marble: Geochemistry, technology, trade.  Springer, Dordrecht, 464 p. https://doi.org/10.1007/978-94-015-7795-3
M. TÓTH, T. 2008: Repedezett, metamorf fluidumtárolók az Alföld aljzatában.  Doktori értekezés, MTA, 399 p.
NÉMETH, N. & MÁDAI, F. 2004: Korai fázisú képlékeny deformációs elemek a Bükk hegység keleti részének mészköveiben II.  mikroszerkezeti jellemzők.  Földtani Közlöny 134/1, 1−28.
NEWMAN, J. & MITRA, G. 1994: Fluid-influenced deformation and recrystallization of dolomite at low temperatures along a natural fault zone, Mountain City window, Tennesse.  Geological Society of America Bulletin 106, 1267−1280. https://doi.org/10.1130/0016-7606(1994)106<1267:fidaro>2.3.co;2
PANĂ, D. I. 1998: Petrogenesis and tectonics of the basement rocks of the Apuseni Mountains: Significance for the Alpine tectonics of the Carpathian-Pannonian region.  Doktori értekezés, 356 p. https://doi.org/10.7939/R38K75543
PANĂ, D. I., HEAMAN, L. M., CREASER, R. A. & ERDMER, P. 2002: Pre-Alpine Crust in the Apuseni Mountains, Romania: Insights from Sm-Nd and U-Pb Data.  The Journal of Geology 110, 341‒354. https://doi.org/10.1086/339536
PAPIU, V. C. & GHENEA, C. 1965: Nota explicativa de harta geologică a Republicii Socialiste România. Foaia 1:200.000 Arad. — Comitetul de Stat al Geologiei Institutul Geologic, București, 25 p.
PASSCHIER, C. S. & TROUW, R. A., J. 2005: Microtectonics.  Springer Verlag, Berlin Heidelberg, 366 p. https://doi.org/10.1007/978-3-662-08734-3
POLIKRETI, K. 2007: Detection of ancient marble forgery: Techniques and limitations.  Archaeometry 49, 603619. https://doi.org/10.1111/j.1475-4754.2007.00325.x
POLIKRETI, K. & MANIATIS, Y. 2002: A new methodology for the provenance of marble based on EPR spectroscopy.  Archeometry 44, 121. https://doi.org/10.1111/1475-4754.00040
REISER, M.K., SCHUSTER, R., SPIKINGS, R., TROPPER, P. & FÜGENSCHUH, B. 2017a: From nappe stacking to exhumation: Cretaceous tectonics in the Apuseni Mountains (Romania). — International Journal of Earth Sciences 106, 659–685. https://doi.org/10.1007/s00531-016-1335-y
REISER, M.K., SCHUSTER, R., TROPPER, P. & FÜGENSCHUH, B. 2017b: Constraints on the depositional and tectonometamorphic evolution of marbles from the Biharia Nappe System (Apuseni Mountains, Romania). — Geologica Carpathica 68/2, 147–164. https://doi.org/10.1515/geoca-2017-0012
RICCA, M., BELFIORE, C. M., RUFFOLO, S. A., BARCA, D., BUERGO, M. A. D., CRISCI, G. M. & LA RUSSA, M. F. 2015: Multi-analytical approach applied to the provenance study of marbles used as covering slabs in the archeological submerged site of Baia (Naples, Italy): The case of the „Villa con ingresso a protiro”.  Applied Surface Science 357, 13691379. https://doi.org/10.1016/j.apsusc.2015.10.002
RUTTER, E. H. 1971: The influence of interstitial water on the rheological behaviour of calcite rocks.  Tectonophysics 14, 13−33. https://doi.org/10.1016/0040-1951(72)90003-0
RYBACKI, E., EVANS, B., JANSSEN, C., WIRTH, R. & DRESEN, G. 2013: Influence of stress, temperature, and strain on calcite twins constrained by deformation experiments.  Tectonophysics 601, 20‒36. https://doi.org/10.1016/j.tecto.2013.04.021
SZEDERKÉNYI, T. 1984: Az Alföld kristályos aljzata és földtani kapcsolatai.  Doktori értekezés, MTA, 183 p.
SZEDERKÉNYI, T. 1996: Metamorphic formations and their correlation in the Hungarian part of Tisia Megaunit (Tisia composite terrane).  Acta Mineralogica Petrographica 37, 143‒160.
SZEDERKÉNYI, T. 2001: Tisza mega-unit. Prealpine evolution. In: HAAS, J. (ed): Geology of Hungary, Eötvös University Press, Budapest, 148161. https://doi.org/10.1007/978-3-642-21910-8
SUDAR, M. & KOVÁCS, S. 2006: Metamorphosed and ductilely deformed conodonts from Triassic limestones situated beneath ophiolite complexes: Kopanoik Mountain (Serbia) and Bükk Mountain (NE Hungary) ‒ a preliminary comparison.  Geologica Carpathica 57/3, 157‒176.
TARI, G., HORVÁTH, F. & RUMPLER, J. 1992: Styles of extension in the Pannonian Basin.  Tectonophysics 208, 203219. https://doi.org/10.1016/0040-1951(92)90345-7
ZÖLDFÖLDI, J. 2003: Provenance of the White Marble Building Stones in the Monuments of Ancient Troia.  In: WAGNER, G. A., PERNICKA, E. & UERPMANN, H. P. (eds.): Troia and the Troad, Springer, Berlin, 203−222. https://doi.org/10.1007/978-3-662-05308-9
ZÖLDFÖLDI, J. 2011: 5000 Years Marble History in Troia and the Troad, Petroarchaeological Study on the Provenance of White Marbles in West Anatolia. Doktori értekezés, Tübingen, 290 p.
Published
2017-12-06
Section
Articles