Open-system magmatic processes: magma mingling, crystal transfer and cumulate recycling in the Ditrău Alkaline Massif (Jolotca, Romania)
Abstract
The Tarniţa Complex represents the characteristic ultramafic and mafic rock assemblage of the northern part of the Ditrău Alkaline Massif, exposed in the Eastern Carpathians (Romania). The ~60 m2 surface of the artificial outcrop in the intrusive igneous rock is located in the western part of the complex, near the interflow of the Pietrăriei de Sus and Jolotca creeks. It provides a unique insight into the mingling and mixing processes which occurred between magmas (a) in the former magma storage system and (b) during the incorporation of the earlier crystallized magmatic fragments entrained during the new magma intrusions. The host rock of the studied section (grey, medium– and coarse–grained diorite with an oriented texture) comprises four different types of mafic magmatic enclave (MME): (i) mafic enclave; (ii) feldsparaggregatic enclave; (iii) porphyritic (feldsparaggregatic), mafic enclave and (iv) ultramafic enclave. In addition, a felsic xenolith type of distinct origin is also present: some of the felsic diorite enclaves are hosted in mafic enclaves, thus suggesting they were transported by the recharging mafic magma into the magma chamber. The most important feature of the magma mingling process is the presence of fine-grained, lens-shaped, elongated mafic magmatic enclaves parallel with each other and with the orientation of the minerals in the host rock. The rock wall shows this typical magma mingling structure and implies that mafic recharge was a dominant process during the evolution of the magma storage system. The angular felsic xenoliths and ultramafic enclaves indicate the recycling of earlier cumulates by the intruding magmas. The mafic rim of the mafic magmatic enclaves and the nearby black bands (“schlieren”) represent additional important characteristics of the mingling structures.
References
Almási, E.E., Batki, A. & Kiss, B. 2015: Amfibolok petrogenetikai jelentősége a Ditrói alkáli masszívum ultramafikus kumulátum kőzeteiben. — Földtani Közlöny 145/3, 229–246. http://ojs3.mtak.hu/index.php/foldtanikozlony/article/view/133
Anastasiu, N. & Constantinescu, E. 1979: Structura şi petrogeneza masivului alcalin de la Ditrău. Raport geologic final. — Manuscript, Archiva IPEG Harghita, Miercurea–Ciuc.
Anastasiu, N. & Constantinescu, E. 1980: Structure du massif alcalin de Ditrău. — Analele Universitatii Bucuresti Seria Geologie 29, 3–22.
Balintoni, I. 1997: Geotectonica terenurilor metamorfice din Romania. Geotectonique from the metamorphic terraines of Romania. — Editura Carpatica, Cluj–Napoca, 176p.
Balintoni, I., Gheuca, I. & Vodǎ, Al. 1983: Pânze de încălecare Alpine şi Hercinice din zona sudică şi centrală a Zonei Cristalino Mezozoice din Carpaţii Orientali. Alpine and Hercynian overthrust nappes from central and southern areas of the East Carpathians Crystalline Mesozoic Zone. — Anuarul Instutului de Geologie şi Geofizică al României 60, 15–22.
Balintoni, I., Balica, C., Ducea, M., Chen, F., Hann, H.P. & Sabliovschi, V. 2009: Late Cambrian–Early Ordovician Gondwanan terranes in the Romanian Carpathians: a zircon U/Pb provenance study. — Gondwana Research 16, 119–133. https://doi.org/10.1016/j.gr.2009.01.007
Balintoni, I. & Balica, C. 2013: Carpathian peri–Gondwanan terranes in the East Carpathians (Romania): a testimony of an Ordovician, North–African orogeny. — Gondwana Research 23/3 1053–1070. https://doi.org/10.1016/j.gr.2012.07.013
Balintoni, I., Balica, C., Ducea, H. & Horst–Peter, H. 2014: Peri–Gondwanan terranes in the Romanian Carpathians: A review of their spatial distribution, origin, provenance, and evolution. – Geoscience Frontiers 5/3, 395–411. https://doi.org/10.1016/j.gsf.2013.09.002
Batki, A., Pál–Molnár, E. & Bárdossy, A. 2004: Occurrence and petrology of lamprophyres from the northern part of the Ditrău Alkaline Massif, Eastern Carpathians, Romania. — Acta Mineralogica Petrographica 45/2, 21–28.
Batki, A., Pál–Molnár, E., Dobosi, G. & Skelton, A. 2014: Petrogenetic significance of ocellar camptonite dykes in the Ditrău Alkaline Massif, Romania. — Lithos 200–201, 181–196. https://doi.org/10.1016/j.lithos.2014.04.022
Baxter, S. & Feely, M. 2002: Magma mixing and mingling textures in granitoids: examples from the Galway Granite, Connemara, Ireland. — Mineralogy and Petrology 76, 63– 74. https://doi.org/10.1007/s007100200032
Campos, T.F.C., Neiva, A.M.R. & Nardi, L.V.S. 2002: Geochemistry of the Rio Espinharas hybrid complex, northeastern Brazil. — Lithos 64, 131–153. https://doi.org/10.1016/s0024-4937(02)00199-8
Cashman, K. & Blundy, J.D. 2013: High–Mg Petrological cannibalism: the chemical and textural consequences of incremental magma body growth. — Contributions to Mineralogy and Petrology 166/3, 703–729. https://doi.org/10.1007/s00410-013-0895-0
Codarcea, A. Codarcea, D.M. & Ianovici, V. 1957: Structura geologicǎ a masivului de roci alkaline de la Ditrǎu. — Buletin Ştiinţific, Secţia de Geologie şi Geografie, II/3–4, 385–446.
Couch, S., Sparks, R. S. J. & Carroll, M. R. 2001: Mineral disequilibrium in lavas explained by convective self–mixing in open magma chambers. — Nature 411, 1037–1039. https://doi.org/10.1038/35082540
Dallmeyer, R.D., Kräutner, H. & Neubauer, F. 1997: Middle–late triassic 40Ar/39Ar hornblende ages for early intrusions within the Ditrau Alkaline Massif, Rumania: implications for alpine rifting in the carpathian orogen. — Geologica Carpathica, 48/6, 347–352.
Davidson, J., Turner, S., Handley, H., Macpherson, C., Dosetto A. 2007a: Amphibole “sponge” in arc crust? — Geology 35/9, 787–790. https://doi.org/10.1130/G23637A.1
Davidson, J., Morogan, D.J., Charlier, B.L.A., Harlou, R., Hora, J.M. 2007b: Microsampling and Isotopic Analysis of Igneous Rocks: Implications for the Study of Magmatic Systems. — Annual Review of Earth and Planetary Sciences 35/1, 273–311. https://doi.org/10.1146/annurev.earth.35.031306.140211
Dingwell, D.B. 2009: Magma mixing, mingling and unmixing. In: Schubert, G. (ed.): Treatise on Geophysics, vol. 2, Mineral Physics, Elsevier, 420.
Duchesne, J.C. & Charlier, B. 2005: Geochemistry of cumulates from the Bjerkreim–Sokndal layered intrusion (S. Norway). Part I: Constraints from major elements on the mechanism of cumulate formation and on the jotunite liquid line of descent. — Lithos 83, 229–254. https://doi.org/10.1007/978-94-017-9652-1
Fall, A., Bodnar, J.R., Szabó, Cs. & Pál–Molnár, E. 2007: Fluid evolution in the nepheline syenites of the Ditrău Alkaline Massif, Transylvania, Romania. — Lithos 95/3–4, 331–345. https://doi.org/10.1016/j.lithos.2006.08.005
Farner, M.J., Lee, C.A. & Putirka, K.D. 2014: Mafic–felsic magma mixing limited by reactive processes: A case study of biotite–rich rinds on mafic enclaves. — Earth and Planetary Science Letters 393, 49–59. https://doi.org/10.1016/j.epsl.2014.02.040
Frost, T.P. & Mahood, G.A. 1987: Field, chemical, and physical constraints on mafic–felsic magma interaction in the Lamarck Granodiorite, Sierra Nevada, California. — Geological Society of America Bulletin 99, 272–291. https://doi.org/10.1130/0016-7606(1987)99<272:FCAPCO>2.0.CO;2
Georgiev, N., Henry, B., Jordanova, N., Froitzheim, N., Jordanova, D., Ivanov, Z., & Dimov, D. 2009: The emplacement mode of Upper Cretaceous plutons from the southwestern part of the Sredna Gora Zone (Bulgaria): structural and AMS study. — Geologica Carpathica 60/1, 15–33. https://doi.org/10.2478/v10096-009-0001-8
Gordon, A. 2002: Analysis and interpretation of macrorhythmic units of gabbro–diorite interlayering at Arey Nack, Vinalhaven Island, Maine. — 15th Keck Symposium 15, 1–4.
Hassanen, M.A. 1999: Mantle–crustal Source of Mafic–felsic Magmas in the Dubr–Igla Intrusive Complex, Egypt: Inference from Geochemistry and Sr–Nd Isotopic Study. — Journal of King Abdulaziz University 11, 103–141.
Hibbard, M.J. 1991: Textural anatomy of twelve magma–mixed granitoid systems. In: Didier, J., Barbarin, B. (Eds.), Enclaves and Granite Petrology. — Elsevier, 431–444.
Hoeck, V., Ionescu, C., Balintoni, I. & Koller, F. 2009: The Eastern Carpathians “ophiolites” (Romania): remnants of a Triassic ocean. — Lithos 108, 151–171. https://doi.org/10.1016/j.lithos.2008.08.001
Humphreys, M.C.S., Blundy, J.D. & Sparks, R.S.J. 2006: Magma Evolution and Open–System Processes at Shiveluch Volcano: Insights from Phenocryst Zoning. — Journal of Petrology 47/12, 2303–2334. https://doi.org/10.1093/petrology/egl045
Ianovici, V. 1933: Étude sur le massif syénitique de Ditrău, région Jolotca, district Ciuc (Transylvanie). — Revista Muzeului Geologic–Mineralogic al Universităţii din Cluj 4/2, 1–53.
Jakab, Gy. 1998: Geologia Masivului alcalin de la Ditrău. — Pallas–Akademia, Miercurea–Ciuc, 298 p.
Jakab, Gy., Garbaşevschi, N., Balla, Z., Zakariás, L., Péter, J., Strungaru, T., Hereda, N., Sileanu, T., Aronescu, M., Postolache, C., Mocanu, V., Teulea, G., Hannich, D. & Tiepac, I. 1987: Sinteza datelor obţinute prin prospecţiuni geologice complexe, lucrări miniere şi foraje, executate pentru minereuri de metale rare şi disperse, feroase şi neferoase în masivul de roci alkaline de la Ditrău, judeţul Hargita. — Manuscript, Archiva IPEG Harghita, Miercurea–Ciuc.
Janoušek, V., Bowes, D.R., Braithwaite, C.J.R. & Rogers, G. 2000: Microstructural and mineralogical evidence for limited involvement of magma mixing in the petrogenesis of a Hercynian high–K calc–alkaline intrusion: the Kozarovice granodiorite, Central Bohemian Pluton, Czech Republic. — Transactions of the Royal Society of Edinburgh: Earth Sciences 91, 15–26. https://doi.org/10.1130/0-8137-2350-7.15
Janoušek, V., Braihwaite, C.J.R., Bowes, D.R. & Gerdes, A. 2004: Magma–mixing in the genesis of Hercynian calc–alkaline granitoids: an integrated petrographic and geochemical study of the Sázava intrusion, Central Bohemian Pluton, Czech Republic. — Lithos 78, 67–99. https://doi.org/10.1016/j.lithos.2004.04.046
Koch, A. 1879: A ditrói syenittömzs kőzettani és hegyszerkezeti viszonyairól. — Magyar Tudományos Akadémiai Értekezések 9/2.
Kovács, G. & Pál–Molnár, E. 2005: A Ditrói Alkáli Masszívum granitoid kőzeteinek petrogenezise. — Földtani Közlöny 135/1, 121–143.
Kozur, H. 1991: The evolution of the Meliata–Hallstatt ocean and its significance for the early evolution of the Eastern Alps and Western Carpathians. — Palaeogeography, Palaeoclimatology, Palaeoecology 87/1–4, 109–135. https://doi.org/10.1016/0031-0182(91)90132-B
Le maitre, R.W., Streckeisen, A., Zanettin, B., Le Bas, M.J., Bonin, B., Bateman, P., Bellieni, G., Dudek, A., Efremova, S., Keller, J., Lameyre, J., Sabine, P.A., Schmid, R., SØrenden, H. & Woolley, A.R., 2002: Igneous Rocks: A Classification and Glossary of Terms, 2nd edition. — Cambridge University Press, 236p.
Lilienbach, L. 1833: Journal d’un voyage géologique fait en travers toute la chaíne des Carpathes, en Bucovine, en Transylvanie et dans le Marmarosch. — Mémoires de la Société géologique de France 1, 237–316.
Ma, X., Meert, J.G., Xu, Z. & Zhao, Z. 2017: Evidence of magma mixing identified in the Early Eocene Caina pluton from the Gangdese Batholith, southern Tibet. — Lithos 278–281, 126–139. https://doi.org/10.1016/j.lithos.2017.01.020
McCulloch, L. 2007: Evidence for upward growth of a layered pluton in the Bindal Batholith, north–central Norway. — Texas Tech University, 1–83.
Michel, L., Wenzel, T. & Markl, G. 2016: Interaction between two contrasting magmas in the Albtal pluton (Schwarzwald, SW Germany): textural and mineral – chemical evidence. — International Journal of Earth Science. https://doi.org/10.1007/s00531-016-1363-7
Morogan, V., Upton, B.G.J. & Fitton, J.G. 2000: The petrology of the Ditrău alkaline complex, Eastern Carpathians. — Mineralogy and Petrology 69, 227–265. https://doi.org/10.1007/s007100070023
Pană, D., Balintoni, I. & Heaman L. 2000: Precise U–Pb zircon dating of the syenite phase from Ditrău Alkaline Igneous Complex. — Studia Universitatis Babeş–Bolyai, Geologia 45/1, 79–89.
Pál–Molnár, E. 1988: Studiul mineralogic şi petrologic al complexului Jolotca din masivul alcalin de la Ditrău, cu privire specială asupra mineralelor purtătoare de fier — PhD disszertáció, 127p.
Pál–Molnár, E. 1992: Petrographical characteristics of Ditró (Orotva) hornblendites, Eastern Charpatians, Transylvania (Romania): a preliminary description. — Acta Mineralogica– Pertrographica 33, 67–80.
Pál–Molnár, E. 1994a: A Ditrói Szienitmasszívum kialakulása a földtani megismerés tükrében. — A Magyar Tudományos Akadémia Szegedi Akadémiai Bizottságának Kiadványai, Szeged, 85p.
Pál–Molnár, E. 1994b: Adalékok a Ditrói szienitmasszívum szerkezeti és kőzettani ismeretéhez. — Szegedi Akadémiai Bizottság, Föld– és Környezettudományi Szakbizottság, 52p.
Pál–Molnár, E. 1994c: Petrographical characteristics of Ditrău (Orotva) diorites, Eastern Carpathians, Transylvania (Romania). — Acta Mineralogica– Pertrographica 35, 95–109.
Pál–Molnár, E. 1998: A Ditrói szienitmasszívum földtani felépítése és petrológiája, különös tekintettel a hornblenditek és dioritok kialakulására, I–II. — Ph.D. értekezés, JATE, Szeged, 219.
Pál–Molnár, E. 2000: Hornblendites and diorites of the Ditrău Syenite Massif. — Ed. Department of Mineralogy, Geochemistry and Petrology, University of Szeged, Szeged, 172p.
Pál–Molnár, E. 2008: Mezozóos alkáli magmatizmus a Kárpát régióban: a Ditrói Alkáli Masszívum petrogenezise. — OTKA Zárójelentés 46736, 80p.
Pál–Molnár, E. 2010a. Geology of Székelyland. — In: Szakáll, S., Kristály, F. (eds.): Mineralogy of Székelyland, Eastern Transylvania, Romania, Csík County Nature and Conservation Society, Miercurea Ciuc, pp 33–43.
Pál–Molnár, E. 2010b. Rock–forming minerals of the Ditrău Alkaline Massif. — In: Szakáll, S., Kristály, F. (eds.): Mineralogy of Székelyland, Eastern Transylvania, Romania, Csík County Nature and Conservation Society, Miercurea Ciuc, pp 63–88.
Pál–Molnár, E., Batki, A., Ódri, Á., Kiss, B. & Almási, E. 2015a: Geochemical implications fot the magma origin of granitic rocks from the Ditrau Alkaline Massif (Eastern Carpathians, Romania). — Geologia Croatica 68/1, 51–66. https://doi.org/10.4154/GC.2015.04
Pál–Molnár, E., Batki, A., Almási, E., Kiss, B., Upton, B.G.J., Markl, G. & Odling, N. 2015b: Origin of mafic and ultramafic cumulates from the Ditrău Alkaline Massif, Romania. — Lithos 239, 1–18. http://dx.doi.org/10.1016/j.lithos.2015.09.022
Pál–Molnár, E. & Árva–Sós, E. 1995: K/Ar radiometric dating on rocks from the northern part of the Ditrău Syenite Massif and its petrogenetic implications. — Acta Mineralogica– Pertrographica 36, 101–116.
Perugini, D., Poli, G., Christofides, G. & Eleftheriadis, G. 2003: Magma mixing in the Sithonia plutonic complex, Greece: evidence from mafic microgranular enclaves. —Mineralogy and Petrology 78, 173–200. https://doi.org/10.1007/s00710-002-0225-0
Peytcheva, I., von Quadt, A., Georgiev, N., Ivanov, Zh., Heinrich, C.A. & Frank, M. 2008: Combining trace–element compositions, U–Pb geochronology and Hf isotopes in zircon to unravel complex calcalkaline magma chambers in the Upper Cretaneous Srednogorie zone (Bulgaria). — Lithos 104, 405–427. https://doi.org/10.1016/j.lithos.2008.01.004
Săndulescu, M. 1984: Geotectonica României. — Editura Technică, Bucureşti, 336p.
Smith D.J. 2014: Clinopyroxene precursors to amphibole sponge in arc crust. — Nature Communications 5/4329. https://doi.org/10.1038/ncomms5329.
Streckeisen, A. 1938: Das Nephelinsyenit–Massiv von Ditro in Rumänien als Beispiel einer kombinierten Differentiation und Assimilation. — Verhandlungen der Naturforschenden Gesellschaft in Basel, 159–161.
Streckeisen, A. 1952: Das Nephelinsyenit–Massiv von Ditro (Siebenburgen), I. Teil. Schweizerische Mineralogische und Petrographische Mitteilungen 32, 251–308.
Streckeisen, A. 1954: Das Nephelinsyenit–Massiv von Ditro (Siebenbürgen), II. Teil. —Schweizeriche Mineralogische und Petrographische Mitteilungen, 34, 336–409.
Streckeisen, A. 1960: On the structure and origin of the Nephelinsyenite Complex of Ditro (Transylvania, Roumania). — 21st International Geological Congress, Rep.21st Session Norden, 13, 228–238.
Streckeisen, A. & Hunziker, i.c. 1974: On the origin of the Nephelinesyenite Massif of Ditó (Transylvania, Romania). — Schweizerische Mineralogische Petrographische Mitteilungen, 54, 59–77.
Tiepolo, M., Tribuzio, R., Langone, A, 2011: High–Mg Andesite Petrogenesis by Amphibole Crystallization and Ultramafic Crust Assimilation: Evidence from Adamello Hornblendites (Central Alps, Italy). — Journal of Petrology 52/5, 1011–1045. https://doi.org/10.1093/petrology/egr016
Valesco–Tapia, F., Rodríguez–Saavedra, P., Márquez, A., Navarro de León, I., De Ignacio, C., Marroquín Guerra, G., Quintanilla–Garza, J. & Rangel–alvarez, O.M. 2013: Mineralogical and geological evidence of magma mingling/mixing in the Sierra de las Cruces Volcanic range, Mexican Volcanic Belt. — Journal of Iberian Geology 39, 147–166.
Ubide, T., Galé, C., Larrea, P., Arranz, E., Lago, M. & Tierz, P. 2014: The Relevance of Crystal Transfer to Magma Mixing: a Case Study in Composite Dykes from the Central Pyrenees. — Journal of Petrology 55/8, 1535–1559. https://doi.org/10.1093/petrology/egu033
Weidendorfer, D., Mattsson, H.B. & Ulmer, P. 2014: Dynamics of Magma Mixing in Partially Crystallized Magma Chambers: Textural and Petrological Constraints from the Basal Complex of the Austurhorn Intrusion (SE Iceland). — Journal of Petrology 55/9, 1865–1903. https://doi.org/10.1093/petrology/egu044
Wiebe, R.A., Frey, H. & Hawkins, D.P. 2001: Basaltic pillow mounds in the Vinalhaven intusion, Maine. — Journal of Volcanology and Geothermal Research 107, 171–184. https://doi.org/10.1016/S0377-0273(00)00253-5
Wyllie, P.K., Cox, K.G. & Biggar, M.G. 1962: The Habit of Apatite in Synthetic Systems and Igneous Rocks. — Journal of Petrology 3/2, 238–243. https://doi.org/10.1093/petrology/3.2.238
Zólya, L. & Zólya, É.G. 1985: A geological study based on geological mapping carried out in 1:5000 scale from the area of the Putna Întunecoasă spring (in Romanian). — Manuscript, Archiva IPEG Harghita, Miercurea–Ciuc.
Zólya, L.& Zólya, É.G. 1986: A geological study based on geological mapping carried out in 1:5000 scale from the area of the Tilalmas—Halaság spring (in Romanian). — Manuscript, Archiva IPEG Harghita, Miercurea–Ciuc.