Köpenyeredetű kőzetek felismerésének története és szerepe a geológiai gondolkodás fejlődésében

  • Antal Embey-Isztin Magyar Természettudományi Múzeum Ásvány- és Kőzettár
Kulcsszavak: tudománytörténet, köpeny, peridotit

Absztrakt

Az 1960.-as évek elejétől két új momentum forradalmasította a geológiai gondolkodás fejlődését. Az egyik, a lemeztektonika, mely széles kőrben vált ismerté, a másik a köpenyszármazású kőzetek azonosítása és az ebből fakadó új eredmények. Bár ez utóbbi is gyökerestül változtatta meg a geológia tudományát, ennek igazi jelentőségét inkább csak a szakemberek ismerik. Ez a dolgozat a köpenykőzetek felismerésének történetét követi nyomon, valamint néhány kiragadott példán keresztül igyekszik bemutatni azt az óriási fejlődést, melyet e kőzetek részletes vizsgálatainak köszönhetünk.

Hivatkozások

ALLÈGRE, C. J. 1982:. Chemical geodynamics. — Tectonophysics 81(3-4), 109-132. https://doi.org/10.1016/0040-1951(82)90125-1
BOWEN N. L. 1928: Evolution of Igneous Rocks. — Princeton University Press, New Jersey
CONDIE K. C. & KRÖNER A. 2008: When did plate tectonics begin? Evidence from the geologic record. — Geological society of America special papers 440, 281-294. https://doi.org/10.1130/2008.2440(14)

CONDIE K. C. & SHEARER C. K. 2017: Tracking the evolution of mantle sources with incompatible element ratios in stagnant-lid and plate-tectonic planets. — Geochimica et Cosmochimica Acta 213, 47-62. https://doi.org/10.1016/j.gca.2017.06.034
DEMOUCHY S. & BOLFAN-CASANOVA N. 2016: Distribution and transport of hydrogen in the lithospheric mantle: A review. — Lithos 240, 402-425. https://doi.org/10.1016/j.lithos.2015.11.012
De ROEVER W.V. 1957: Sind die alpinotypen Peridotitmassen vielleicht tektonisch erfrachtete Bruchstuecke der Peridotitschale? — Geologische Rundschau 46(1), 137-146. https://doi.org/10.1007/bf01802890
DREIBUS G. WÄNKE H. 1987: Volatiles on Earth and Mars: A comparison. — Icarus 71, 225-240. https://doi.org/10.1016/0019-1035(87)90148-5
EMBEY-ISZTIN A. 1976a: Felsőköpeny eredetű lherzolitzárványok a magyarországi alkáliolivinbazaltos, bazanitos vulkanizmus kőzeteiben. — Földtani Közlöny 106, 42-51.
EMBEY-ISZTIN A. 1976b: Amphibolite/lherzolite composite xenolith from Szigliget, north of the Lake Balaton, Hungary. — Earth and Planetary Science Letters 31(2), 297-304. https://doi.org/10.1016/0012-821x(76)90223-5
ERNST T. 1935: Olivinknollen der Basalte als Bruchstücke alter Olivinfelsen. — Nachr. Ges. Wiss. Göttingen, Math.-physik. Kl., IV, Geol. Miner. 1, 147–154.
ERNST W. G. 2007: Speculations on evolution of the terrestrial lithosphere–asthenosphere system—plumes and plates. — Gondwana Research 11(1), 38-49. https://doi.org/10.1016/j.gr.2006.02.007

FORBES R. B. & KUNO H. 1967: Peridotite inclusions and basaltic host rocks. — In: Ultramafic and Related Rocks (ed P. J. WYLLIE), John Wiley Sons, Inc., New York 328-337.
GREEN, D. H. & RINGWOOD A. E. 1967: The genesis of basaltic magmas. — Contributions to Mineralogy and Petrology, 15(2), 103-190. https://doi.org/10.1007/bf00372052

HESS H. H. 1962: History of Ocean Basins. Petrologic Studies: a volume to honor A. F. Buddington 599-620.

HIRSCHMANN M.M. & KOHLSTEDT D. 2012: Water in Earth’s mantle. — Physics Today 65, 40–45. https://doi.org/10.1063/pt.3.1476
HOFMANN K . 1875—78: A déli Bakony bazalt-kőzetei. — Magyar Királyi Földtani Intézet Évkönyve 3 339-525.
HOLMES A. 1931: XVIII. Radioactivity and Earth Movements. — Transactions of the Geological Society of Glasgow 18(3), 559-606.
KAWABATA H., HANYU T., CHANG Q., KIMURA J.I., NICHOLS A.R. & TATSUMI Y. 2011: The petrology and geochemistry of St. Helena alkali basalts: evaluation of the oceanic crust-recycling model for HIMU OIB. — Journal of Petrology, 52(4), 791-838. https://doi.org/10.1093/petrology/egr003
KOCH S. (1966): Magyarország ásványai. Akadémiai Kiadó, Budapest, pp. 419.
KOVÁCS I., GREEN D.H., ROSENTHAL A., HERMANN J., O’NEILL H.S.C., HIBBERSON W.O. & UDVARDI B. 2012: An experimental study of water in nominally anhydrous minerals in the upper mantle near the water-saturated solidus. — Journal of Petrology, 53(10), 2067-2093. https://doi.org/10.1093/petrology/egs044
KUNO H. 1959: Origin of Cenozoic petrographic provinces of Japan and surrounding areas. — Bulletin of Volcanology 20(1), 37-76. https://doi.org/10.1007/bf02596571
KURZ M.D., JENKINS, W.J., HART S.R. and CLAGUE, D. 1983: Helium isotopic variations in volcanic rocks from Loihi Seamount and the Island of Hawaii. — Earth and Planetary Science Letters 66, 388-406. https://doi.org/10.1016/0012-821x(83)90154-1
LACROIX A. 1893: Les enclaves des roches volcaniques. — Annales de l'Académie de Mâcon. TX. Ed. Protat frères. Mâcon, pp. 710
LE ROUX V., BODINIER J. L., TOMMASI A., ALARD O., DAUTRIA J. M., VAUCHEZ A. & RICHES A. J. V. 2007: The Lherz spinel lherzolite: refertilized rather than pristine mantle. — Earth and Planetary Science Letters 259 (3), 599-612. https://doi.org/10.1016/j.epsl.2007.05.026
MARTIN H., MOYEN J. F., GUITREAU M., BLICHERT-TOFT J., & LE PENNEC J. L. 2014: Why Archaean TTG cannot be generated by MORB melting in subduction zones. —Lithos 198, 1-13. https://doi.org/10.1016/j.lithos.2014.02.017

MENZIES M. A. 1983: Mantle ultramafc xenoliths in alkaline magmas: evidence for mantle heterogeneity modified by magmatic activity. — In: C.J. Hawkesworth, M.J. Norry (Eds),Continental Basalts and Mantle Xenoliths. Shiva Publishing, Cheshire, U.K., 92-110
PORCELLI D., ELLIOTT T. 2008:The evolution of helium isotopes in the upper mantle and the generation of isotopic anomalies. — Earth Planetary Science Letters 269, 175–185. https://doi.org/10.1016/j.epsl.2008.02.002
RINGWOOD A. E. 1962: A model for the upper mantle. Journal of Geophysical Research, 67(2), 857-867. https://doi.org/10.1029/jz067i002p00857
ROLLINSON H. 2007: Early Earth Systems: A Geochemical Approach. — Malden,
Massachusetts, Blackwell, 285 p. https://doi.org/10.1017/s0016756808004640
ROSS C.S., FOSTER M.D. & MYERS A.T. 1954: Origin of dunites and of olivine-rich inclusions in basaltic rocks. — American Mineralogist 39(9-10), 693-737.
SOLOMATOV V. S. & MORESI L. N. 1996: Stagnant lid convection on Venus. — Journal of Geophysical Research: Planets 101(E2), 4737-4753. https://doi.org/10.1029/95je03361

STERN R. J. 2008: Modern-style plate tectonics began in Neoproterozoic time: an alternative interpretation of Earth's tectonic history. — Geological Society of America Special Papers 440, 265-280. https://doi.org/10.1130/2008.2440(13)

TURNER F. J & VERHOOGEN J. 1960: Igneous and metamorphic petrology. — McGraw-Hill Book Company, INC. Second Edition, New York Toronto London pp. 694.
TURNER F. J. 1942: Preferred orientation of olivine crystals in peridotites. — Transactions of the Royal Society of New Zealand 72, 280–300.
VINE F. J. & MATTHEWS D. H. 1963: Magnetic anomalies over oceanic ridges. — Nature 199(4897), 947–949. https://doi.org/10.1038/201591a0
VITÁLIS I. 1911: A balatonvidéki bazaltok. A Balaton tudományos tanulmányozásának eredményei. A balatonvidék bazaltos bombái. I. rész 6. fejezet. Budapest
WAGER L. R. 1958: Beneath the Earth's crust. — Advancement of Science 15, 31-45.
ZINDLER A. & HART S. 1986: Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14(1), 493-571. https://doi.org/10.1146/annurev.ea.14.050186.002425
Megjelent
2017-12-06
Rovat
Szemle