Új módszer alkáli bazaltos magmák olivin- és klinopiroxén-frakcionációjának modellezésére
Absztrakt
A monogenetikus vulkáni mezőket felépítő bazaltos magmák képződésének, fejlődéstörténetének vizsgálata a modern vulkanológiai kutatások egyik legfontosabb kérdésköre. A Kárpát–Pannon térségben számos neogén–kvarter monogenetikus alkáli bazalt vulkáni terület található, amelyek képződményei változatos földrajzi elterjedésük, koruk és összetételük révén az intrakontinentális alkáli bazaltok természetes laboratóriumai. Az elmúlt három évtizedben számos tanulmány jelent meg e bazaltos magmák genezise kapcsán, azonban a kutatások vagy csak a földköpenybeli forráskőzet alapvető kőzettani tulajdonságaira irányultak, vagy olivin frakcionáció alapú primitívmagma-kalkulátorok segítségével — esetleg egyszerű olivin ± klinopiroxén hozzáadással — a szülőmagma összetételére is becslést adtak. A közismert primitívmagma-összetételt számoló programok azonban pontatlan eredményt adnak klinopiroxén-frakcionált magmák esetében (és akár piroxenit-tartalmú forráskőzet esetében is), mivel ezeket olivin-fíros óceáni szigeti bazaltok és peridotitok fő- vagy nyomelemtartalma alapján dolgozták ki, és alapelvük a teljeskőzet-összetételhez történő olivin hozzáadás.
A Kárpát–Pannon térség alkáli bazaltos képződményeit felhasználva egy olyan új frakcionációs modellezést dolgoztunk ki, amely olivin- és/vagy klinopiroxén-fíros intrakontinentális alkáli bazaltok esetében alkalmas a két ásvány szülőmagmából frakcionálódott mennyiségének meghatározására csupán a kőzet főelem-összetétele és Ni-tartalma, valamint a benne található olivin fenokristályok forsterit- és Ni-koncentrációja alapján. A frakcionáció mértéke alapján becslést tudunk adni a kőzet szülőmagmájának főelem-összetételére és a -értékére is.
Hivatkozások
ALI, S., NTAFLOS, T. 2011: Alkali basalts from Burgenland, Austria: Petrological constraints on the origin of the westernmost magmatism in the Carpathian–Pannonian Region. – Lithos 121, 176-188. https://doi.org/10.1016/j.lithos.2010.11.001
ALI, S., NTAFLOS, T. & UPTON, B.G.J. 2011: Petrogenesis and mantle source characteristics of Quaternary alkaline mafic lavas in the western Carpathian–Pannonian Region, Styria, Austria. – Chemical Geology 337-338, 99-113. http://dx.doi.org/10.1016/j.chemgeo.2012.12.001
BALÁZS, E. & NUSSZER, A. 1987: Magyarország medenceterületeinek kunsági (pannóniai s. str.) emeletbeli vulkanizmusa. (Unterpannonischer Vulkanismus der Beckengebiete Ungarns). – A Magyar Állami Földtani Intézet Évkönyve 69, 95-113.
BALOGH, K., ÁRVA-SÓS, E., PÉCSKAY, Z. & RAVASZ-BARANYAI, L. 1986: K/Ar dating of post-Sarmatian alkali basaltic rocks in Hungary. – Acta Mineralogica Petrographica (Szeged) 28, 75-94.
BALOGH, K., EBNER, F. & RAVASZ, CS. 1994: K/Ar-alter Tertiärer Vulkanite der südöstlichen Steiermark und des südlichen Burgenlands. – In: CSÁSZÁR, G. & DAURER, A. (szerk.): Jubiläumsschrift 20 Jahre Geologischen Zusammenarbeit Österreich-Ungarn. 55–72.
BALOGH, K., LOBITZER, H., PÉCSKAY, Z., RAVASZ, C., SOLTI, G. 1990: Kelet-Stájerországi és Burgenlandi tercier vulkanitok K/Ar kora. – A Magyar Állami Földtani intézet évi jelentése az 1988. évről, I., 451-468.
CANÓN-TAPIA, E., 2016: Reappraisal of the significance of volcanic fields. – Journal of Volcanology and Geothermal Research 310, 26–38. https://doi.org/10.1016/j.jvolgeores.2015.11.010
CORTÉS, J.A., WILSON, M., CONDLIFFE, E. & FRANCALANCI, L. 2006: The occurrence of forsterite and highly oxidizing conditions in basaltic lavas from Stromboli volcano, Italy. – Journal of Petrology 47 (7), 1345-1373. https://doi.org/10.1093/petrology/egl012
DEMÉNY, A., VENNEMANN, T.W., HOMONNAY, Z., MILTON, A., EMBEY-ISZTIN, A. & NAGY, G. 2005: Origin of amphibole megacrysts in the Pliocene-Pleistocene basalts of the Carpathian-Pannonian region. – Geologica Carpathica 56 (2), 179-189.
DOBOSI, G. & FODOR, L. 1992: Magma fractionation, replenishment, and mixing as inferred from green-core clinopyroxenes in Pliocene basanite, Southern Slovakia. – Lithos, 28, 133-150. https://doi.org/10.1016/0024-4937(92)90028-W
DOBOSI, G. & JENNER, G.A. 1999: Petrologic implications of trace element variation in clinopyroxene megacrysts from the Nograd volcanic province, north Hungary: a study by laser ablation microprobe-inductively coupled plasma-mass spectrometry. – Lithos 46 (4), 731-749. https://doi.org/10.1016/S0024-4937(98)00093-0
DOBOSI, G., DOWNES, H., MATTEY, D. & EMBEY-ISZTIN, A. 1998. Oxygen isotope ratios of phenocrysts from alkali basalts of the Pannonian basin: evidence for an O-isotopically homogeneous upper mantle beneath a subduction-influenced area. – Lithos, 42, 213-223. https://doi.org/10.1016/S0024-4937(97)00043-1
DOBOSI, G., FODOR, R.V., & GOLDBERG, S.A. 1995. Late-Cenozoic alkali basalt magmatism in Northern Hungary and Slovakia: Petrology, source compositions and relationship to tectonics. – Acta Vulcanologica 7 (2), 199-207.
DOBOSI, G., SCHULTZ-GÜTTLER, R., KURAT, G. & KRACHER, A. 1991: Pyroxene chemistry and evolution of alkali basaltic rocks from Burgenland and Styria, Austria. – Mineralogy and Petrology, 43 (4), 275-292. https://doi.org/10.1007/BF01164531
DOWNES, H., SEGHEDI, I., SZAKACS, A., DOBOSI, G., JAMES, D.E., VASELLI, O., RIGBY, I.J., INGRAM, G.A., REX, D. & PÉCSKAY, Z. 1995. Petrology and Geochemistry of Late Tertiary Quaternary Mafic Alkaline Volcanism in Romania. – Lithos 35 (1-2), 65-81. https://doi.org/10.1016/0024-4937(95)91152-Y
EMBEY-ISZTIN, A. & DOBOSI, G. 1995. Mantle source characteristics for Miocene–Pleistocene alkali basalts, Carpathian–Pannonian Region: a review of trace elements and isotopic composition. – Acta Vulcanologica 7 (2), 155-166.
EMBEY-ISZTIN, A. & DOBOSI, G. 2007: Composition of olivines in the young alkali basalts and their peridotite xenoliths from the Pannonian Basin. – Annales Musei historico-naturalis hungarici 99, 5-22.
EMBEY-ISZTIN, A., DOWNES, H. & DOBOSI, G. 2001. Geochemical characterization of the Pannonian Basin mantle lithosphere and asthenosphere: an overview. – Acta Geologica Hungarica 44, 259–280.
EMBEY-ISZTIN, A., DOBOSI, G., JAMES, D., DOWNES, H., POULTIDISCH. & SCHARBERT H.G. 1993: A compilation of new major, trace element and isotope geochemical analyses of the young alkali basalts from the Pannonian Basin. – Fragmenta Mineralogica et Palaeontologica 16, 5-26.
EMBEY-ISZTIN, A., DOWNES, H., JAMES, D.E., UPTON, B.G.J., DOBOSI, G., INGRAM, G.A., HARMON, R.S. & SCHARBERT, H.G. 1993: The Petrogenesis of Pliocene Alkaline Volcanic-Rocks from the Pannonian Basin, Eastern Central-Europe. – Journal of Petrology 34 (2), 317-343. https://doi.org/10.1093/petrology/34.2.317
FILLERUP, M.A., KNAPP, J.H., KNAPP, C.C. & RAILEANU, V. 2010: Mantle earthquakes in the absence of subduction? Continental delamination in the Romanian Carpathians. – Lithosphere 2 (5), 333–340. https://doi.org/10.1130/L102.1
GÎRBACEA, R. & FRISCH, W. 1998: Slab in the wrong place: lower lithospheric mantle delamination in the last stage of the Eastern Carpathian subduction retreat. – Geology 26 (7), 611–614. https://doi.org/10.1130/0091-7613(1998)026<0611:SITWPL>2.3.CO;2
HARANGI, R. & HARANGI, SZ. 1995: Volcanological study of the Neogene basaltic volcano of Ság-hegy (Little Hungarian Plain volcanic field, Western Hungary) – Acta Vulcanologica, 7 (2), 189-197.
HARANGI, SZ. 2001: Neogene to Quaternary volcanism of the Carpathian-Pannonian Region - a review. – Acta Geologica Hungarica 44 (2-3), 223-258.
HARANGI, SZ. 2007: A Kárpát-Pannon térség legutolsó vulkáni kitörései—lesz-e még folytatás? (The last volcanic eruptions in the Carpathian-Pannonian Region—to be continued?). – Földrajzi Közlemények 131 (4), 271–288.
HARANGI, SZ. & LENKEY, L. 2007: Genesis of the Neogene to Quaternary volcanism in the Carpathian-Pannonian region: Role of subduction, extension, and mantle plume. – In: BECCALUVA, L., BIANCHINI, G. & WILSON, M. (szerk.): Cenozoic Volcanism in the Mediterranean Area, Geological Society of America, Boulder, Colorado (USA), 67-92.
HARANGI, SZ., JANKOVICS, M.É., SÁGI, T., KISS, B., LUKÁCS, R. & SOÓS, I. 2015: Origin and geodynamic relationships of the late Miocene to quaternary alkaline basalt volcanism in the Pannonian basin, eastern-central Europe. – International Journal of Earth Sciences 104, 2007-2032. https://doi.org/10.1007/s00531-014-1105-7
HARANGI, SZ., MOLNÁR, M., VINKLER, A.P., KISS, B., JULL, A.T.J. & LEONARD, A.G. 2010: Radiocarbon dating of the last volcanic eruptions of Ciomadul Volcano, Southeast Carpathians, Eastern-Central Europe. – Radiocarbon 52 (3), 1498–1507. https://doi.org/10.1017/S0033822200046580
HARANGI, SZ., SÁGI, T., SEGHEDI, I. & NTAFLOS, T. 2013: A combined whole-rock and mineral-scale investigation to reveal the origin of the basaltic magmas of the Perşani monogenetic volcanic field, Romania, eastern–central Europe. – Lithos 180–181, 43–57. https://doi.org/10.1016/j.lithos.2013.08.025
HARANGI, SZ., VASELLI, O., TONARINIZ C., SZABÓ CS., HARANGI, R. & CORADOSSI, R. 1995: Petrogenesis of Neogene extension-related alkaline volcanic rocks of the Little Hungarian Plain Volcanic Field (western Hungary). – Acta Vulcanologica 7 (2), 173-188.
HART, S.R. & DAVIS, K.E. 1978: Nickel Partitioning between Olivine and Silicate Melt. – Earth and Planetary Science Letters 40 (2), 203-219. https://doi.org/10.1016/0012-821X(78)90091-2
HERZBERG, C. 2011: Identification of source lithology in the Hawaiian and Canary Islands: implications for origins. - Journal of Petrology 52, 113-146. https://doi.org/10.1093/petrology/egq075
HERZBERG, C. & ASIMOW, P.D. 2008: Petrology of some oceanic island basalts: PRIMELT2.XLS software for primary magma calculation. – Geochemistry, Geophysics, Geosystems 9, Q09001. http://dx.doi.org/10.1029/2008GC002057
HERZBERG, C. & ASIMOW, P. D. 2015: PRIMELT3 MEGA.XLSM software for primary magma calculation: peridotite primary magma MgO contents from the liquidus to the solidus. – Geochemistry, Geophysics, Geosystems 16, 563–578. http://dx.doi.org/10.1002/2014GC005631
HERZBERG, C., ASIMOW, P.D., ARNDT,N.T., NIU, Y., LESHER, C.M., FITTON, J.G., CHEADLE, M.J. & SAUNDERS, A.D. 2007: Temperatures in ambient mantle and plumes: constraints from basalts, picrites and komatiites. – Geochemistry, Geophysics, Geosystems 8, Q02006. http://dx.doi.org/10.1029/2006GC001390
HERZBERG, C. & O'HARA, M.J. 2002: Plume-associated ultramafic magmas of phanerozoic age. – Journal of Petrology 43 (10), 1857-1883. https://doi.org/10.1093/petrology/43.10.1857
INKEY, B. 1878: Két magyarhoni doleritről. – Földtani Közlöny 8, 223-231.
JANKOVICS, M.É., DOBOSI, G., EMBEY-ISZTIN, A., KISS, B., SÁGI, T., HARANGI, S. & NTAFLOS, T. 2013: Origin and ascent history of unusually crystal-rich alkaline basaltic magmas from the western Pannonian Basin. – Bulletin of Volcanology 75:749. https://doi.org/10.1007/s00445-013-0749-7
JANKOVICS, M.É., HARANGI, SZ. &, NTAFLOS, T. 2009. A mineral-scale investigation of the origin of the 2.6 Ma Füzes-tó basalt, Bakony-Balaton Highland Volcanic Field (Pannonian Basin, Hungary). – Central European Geology 52 (2), 97-124. https://doi.org/10.1556/CEuGeol.52.2009.2.1
JANKOVICS, M.É., HARANGI, SZ., KISS, B. &, NTAFLOS, T. 2012: Open-system evolution of the Fuzes-to alkaline basaltic magma, western Pannonian Basin: Constraints from mineral textures and compositions. – Lithos 140, 25-37. https://doi.org/10.1016/j.lithos.2012.01.020
JANKOVICS, M.É., HARANGI, SZ., NÉMETH, K., KISS, B. & NTAFLOS, T. 2015: A complex magmatic system beneath the Kissomlyó monogenetic volcano (western Pannonian Basin): evidence from mineral textures, zoning and chemistry. – Journal of Volcanology and Geothermal Research 301, 38-55.
JANKOVICS, M.É., TARACSÁK, Z., DOBOSI, G., EMBEY-ISZTIN, A., BATKI, A., HARANGI, SZ. & HAUZENBERGER, CH. A. 2016: Clinopyroxene with diverse origins in alkaline basalts from the western Pannonian Basin: Implications from trace element characteristics. – Lithos 262, 120-134. https://doi.org/10.1016/j.lithos.2016.06.030
JUGOVICS, L. 1937: A Sághegy felépítése és vulkánologiai viszonyai. – Magyar Tudományos Akadémia Mathematikai és Természettudományi Értesítő 56, 1214-1235.
JUGOVICS, L. 1948: Adatok Tátika-Prága-Sarvaly-hegyek vulkánológiai felépítéséhez. – Földtani Közlöny, 78, 196-205.
JUGOVICS, L. 1972: A Kisalföld bazalt és bazalttufa előfordulásai. – Magyar Állami Földtani intézet évi jelentése az 1970. évről, 79-101.
KAWABATA, H., HANYU, T., CHANG, Q., KIMURA, J.I., NICHOLS, A.R.L. & TATSUMI, Y. 2011: The Petrology and Geochemistry of St. Helena Alkali Basalts: Evaluation of the Oceanic Crust-recycling Model for HIMU OIB. – Journal of Petrology 52 (4), 791-838. https://doi.org/10.1093/petrology/egr003
KARÁTSON, D., TELBISZ, T., HARANGI, SZ., MAGYARI, E., DUNKL, I., KISS, B., JÁNOSI, C., VERES, D., BRAUN, M., FODOR, E., BIRÓ, T., KÓSIK, S., VON EYNATTEN, H. & LIN, D. 2013: Morphometrical and geochronological constraints on the youngest eruptive activity in East-Central Europe at the Ciomadul (Csomád) lava dome complex, East Carpathians. – Journal of Volcanology and Geothermal Research 255, 43–56. https://doi.org/10.1016/j.jvolgeores.2013.01.013
KARÁTSON, D., WULF, S., VERES, D., MAGYARI, E.K., GERTISSER, R., TIMAR-GABOR, A., NOVOTHNY, Á., TELBISZ, T., SZALAI, Z., ANECHITEI-DACU, V., APPELT, O., BORMANN, M., JÁNOSI, CS., HUBAY, K. & SCHÄBITZ, F. 2016: The latest explosive eruptions of Ciomadul (Csomad) volcano, East Carpathians – A tephrostratigraphic approach for the 51–29ka BP time interval. – Journal of Volcanology and Geothermal Research 319, 29–51. https://doi.org/10.1016/j.jvolgeores.2016.03.005
KIMURA, J.-I.,& KAWABATA, H. 2015: Ocean Basalt Simulator version 1 (OBS1): Trace element mass balance in adiabatic melting of a pyroxenite-bearing peridotite. – Geochemistry, Geophysics, Geosystems 16, 267–300. http://dx.doi.org/10.1002/2014GC005606
KISS, B. 2014: A csomádi dácit petrogenezise: következtetések a magmatározó-rendszer felépítésére és folyamataira. PhD értekezés, ELTE Kőzettan-Geokémiai Tanszék, Budapest
KISS, B., HARANGI, SZ., NTAFLOS, T., MASON, P.R.D. & PÁL-MOLNÁR, E. 2014: Amphibole perspective to unravel pre-eruptive processes and conditions in volcanic plumbing systems beneath intermediate arc volcanoes: a case study from Ciomadul volcano (SE Carpathians). – Contributions to Mineralogy and Petrology 167, 986. https://doi.org/10.1007/s00410-014-0986-6
KONEČNẎ, V., LEXA, J. & BALOGH, K. 1999: Neogene - Quaternary alkali basalt volcanism of Slovakia: Review of volcanic forms and evolution. – Geologica Carpathica 50, 112-115.
KOVÁCS, I., FALUSM GY., STUART, G., HIDAS, K., SZABÓ, CS., FLOWER, M.F.J.., HEGEDŰS, E., POSGAY, K. & ZILAHI-SEBESS, L. 2012: Seismic anisotropy and deformation patterns in upper mantle xenoliths from the central Carpathian-Pannonian region: Asthenospheric flow as a driving force for Cenozoic extension and extrusion? – Tectonophysics 514, 168-179. https://doi.org/10.1016/j.tecto.2011.10.022
KOVÁČ, M., MÁRTON, E., OSZCZYPKO, N., VOJTKO, R., HÓK, J., KRÁLIKPVÁ, S., PLAŠIENKA, D., KLUČIAR, T., HUDÁČKOVÁ, N. & OSZCZYPKO-CLOWES, M. 2017: Neogene palaeogeography and basin evolution of the Western Carpathians, Northern Pannonian domain and adjoining areas. – Global and Planetary Change 155, 133-154. https://doi.org/10.1016/j.gloplacha.2017.07.004
LAUBIER, M., GROVE, T.L. & LANGMUIR, C.H. 2014: Trace element mineral/melt partitioning for basaltic and basaltic andesitic melts: An experimental and laser ICP-MS study with application to the oxidation state of mantle source regions. – Earth and Planetary Science Letters 392, 265-278. https://doi.org/10.1016/j.epsl.2014.01.053
LE BAS, M.J., LEMAITRE, R.W. & WOOLLEY, A.R. 1992: The Construction of the Total Alkali-Silica Chemical Classification of Volcanic-Rocks. – Mineralogy and Petrology 46 (1), 1-22. https://doi.org/10.1007/BF01160698
LEE, C.-T.A., LUFFI, P., PLANK, T., DALTON, H. & LEEMAN, W.P. 2009: Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets. – Earth and Planetary Science Letters 279, 20–33. https://doi.org/10.1016/j.epsl.2008.12.020
LEMARCHAND, F., VILLEMANT, B. & CALAS, G. 1987: Trace-Element Distribution Coefficients in Alkaline Series. – Geochimica et Cosmochimica Acta 51 (5), 1071-1081. https://doi.org/10.1016/0016-7037(87)90201-8
LORINCZI, P. & HOUSEMAN, G.A. 2009: Lithospheric gravitational instability beneath the Southeast Carpathians. – Tectonophysics 474 (1–2), 322–336. https://doi.org/10.1016/j.tecto.2008.05.024
MARTIN, U. & NÉMETH, K. 2004: Mio/Pliocene Phreatomagmatic Volcanism in the Western pannonian Basin. – Geologica Hungarica, Series Geologica, 26, 192 p.
MASON, P.R.D., SEGHEDI, I., SZAKÁCS, A. & DOWNES, H. 1998: Magmatic constraints on geodynamic models of subduction in the East Carpathians, Romania. – Tectonophysics 297, 157–176. https://doi.org/10.1016/S0040-1951(98)00167-X
MATTSSON, H.B. 2012: Rapid magma ascent and short eruption durations in the Lake Natron-Engaruka monogenetic volcanic field (Tanzania): A case study of the olivine melilititic Pello Hill scoria cone. – Journal of Volcanology and Geothermal Research 247, 16-25. https://doi.org/10.1016/j.jvolgeores.2012.07.009
MAURITZ, B. & HARWOOD, H. F. 1937a: A celldömölki Sághegy bazaltos kőzete. – Magyar Tudományos Akadémia Mathematikai és Természettudományi Értesítő 55, 938-958.
MAURITZ, B. & HARWOOD, H. F. 1937b: A Tátika-csoport bazaltos kőzetei. – Magyar Tudományos Akadémia Mathematikai és Természettudományi Értesítő 55, 75-103.
MAURITZ, B., HARWOOD, H. F., THEOBALD, L. S. & ENDRÉDY, E. 1948: A Dunántúli bazaltok kőzetkémiai viszonyai. – Földtani Közlöny, 78, 134-169.
MCGEE, L.E., BEIER, C., SMITH, I.E.M. & TURNER, SP. 2011: Dynamics of melting beneath a small-scale basaltic system: a U-Th-Ra study from Rangitoto volcano, Auckland volcanic field, New Zealand. – Contributions to Mineralogy and Petrology 162 (3), 547-563. https://doi.org/10.1007/s00410-011-0611-x
MCGEE, L.E., SMITH, I.E.M., MILLET, M.A., HANDLEY, H.K. & LINDSAY, A.M. 2013: Asthenospheric Control of Melting Processes in a Monogenetic Basaltic System: a Case Study of the Auckland Volcanic Field, New Zealand. – Journal of Petrology 54 (10), 2125-2153. https://doi.org/10.1093/petrology/egt043
MYSEN, B.O. 1979: Nickel partitioning between olivine and silicate melt: Henry’s law revisited. – American Mineralogist 64, 1107-1114.
NÉMETH, K. 2010: Volcanic glass textures, shape characteristics and compositions of phreatomagmatic rock units from the Western Hungarian monogenetic volcanic fields and their implications for magma fragmentation. – Central European Journal of Geosciences 2 (3), 399-419. https://doi.org/10.2478/v10085-010-0015-6
NÉMETH, K. & KERESZTURI, G. 2015: Monogenetic volcanism: personal views and discussion. – International Journal of Earth Sciences 104 (8), 2131-2146. https://doi.org/10.1007/s00531-015-1243-6
NIU, Y. & O'HARA, M. 2003: Origin of ocean island basalts: a new perspective from petrology, geochemistry, and mineral physics considerations. – Journal of Geophysical Research 108, 2209-2228. http://dx.doi.org/10.1029/2002JB002048
PÉCSKAY, Z., LEXA, J., SZAKÁCS, A., BALOGH, K., SEGHEDI, I., KONECNY, V., KOVÁCS, M., MÁRTON, E., KALICIAK, M., SZÉKY-FUX, V., PÓKA, T., GYARMATI, P., EDELSTEIN, O., ROSU, E. & ZEC, B. 1995: Space and time distribution of Neogene-Quaternary volcanism in the Carpatho-Pannonian Region. – Acta Vulcanologica 7 (2), 15–28.
PELTZ, S., VAJDEA, E., BALOGH, K. & PÉCSKAY, Z. 1987: Contributions to the geochronological study of the volcanic processes int he Calimani and Hargitha Mountains (East Carpathians, Romania). – D. S. Institutul de Geologie şi Geofizică 72, 323 p.
PILET, S., BAKER, M.B. & STOLPER E.M. 2005: Metasomatized Lithosphere and the Origin of Alkaline Lavas. – Science 320 (5878), 916-919. https://doi.org/10.1126/science.1156563
POUCHOU, J.L. & PICHOIR, F. 1991: Quantitative Analysis of Homogeneous or Stratified Microvolumes Applying the Model “PAP”. In: HEINRICH, K.F.J. & NEWBURY D. E. (szerk.) Electron Probe Quantitation. Springer, Boston, 31-75. https://doi.org/10.1007/978-1-4899-2617-3_4
PUTIRKA, K.D. 2005: Mantle potential temperatures at Hawaii, Iceland, and the mid-ocean ridge system, as inferred from olivine phenocrysts: Evidence for thermally driven mantle plumes. – Geochemistry, Geophysics, Geosystems 6, Q05L08. http://dx.doi.org/10.1029/2005GC000915
PUTIRKA, K.D., PERFIT, M., RYERSON, F.J. & JACKSON, M.G. 2007: Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling. – Chemical Geology 241(3-4), 177-206. https://doi.org/10.1016/j.chemgeo.2007.01.014
REN, Y., STUART, G.W., HOUSEMAN, G.A., DANDO, B., IONESCU, C., HEGEDÜS, E., RADOVANOVIĆ, S. & SHEN, Y. 2012: Upper mantle structures beneath the Carpathian–Pannonian region: implications for the geodynamics of continental collision. – Earth and Planetary Science Letters 349–350, 139–152. https://doi.org/10.1016/j.epsl.2012.06.037
SÁGI, T. 2008: Petrogenetikai következtetések a Pannon-medence nyugati részén előforduló alkáli bazaltok képződésére olivin és spinell összetétel adatok alapján. – Diplomamunka, ELTE Kőzettan-Geokémiai Tanszék, 93 p.
SATO, H. 1977: Nickel Content of Basaltic Magmas - Identification of Primary Magmas and a Measure of Degree of Olivine Fractionation. – Lithos 10 (2), 113-120. https://doi.org/10.1016/0024-4937(77)90037-8
SEGHEDI, I., DOWNES, H., VASELLI, O., SZAKÁCS, A., BALOGH, K., & PÉCSKAY, Z. 2004. Post-collisional Tertiary-Quaternary mafic alkalic magmatism in the Carpathian-Pannonian region: A review – Tectonophysics 393, 43–62. https://doi.org/10.1016/j.tecto.2004.07.051
SEGHEDI, I., MAŢENCO, L., DOWNES, H., MASON, P.R.D., SZAKÁCS, A. & PÉCSKAY, Z. 2011: Tectonic significance of changes in post-subduction Pliocene–Quaternary magmatism in the south east part of the Carpathian–Pannonian Region. – Tectonophysics 502 (1–2), 146–157. https://doi.org/10.1016/j.tecto.2009.12.003
SEGHEDI, I., POPA, R.G., PANAIOTU, C.G., SZAKÁCS, A. & PÉCSKAY, Z. 2016: Short-lived eruptive episodes during the construction of a Na-alkalic basaltic field (Perşani Mountains, SE Transylvania, Romania). – Bulletin of Volcanology 78:69. https://doi.org/10.1007/s00445-016-1063-y
ŠIMON. & MAGLAY, J. 2005: Dating of sediments underlying the Putikov vrsok volcano lava flow by the OSL method. – Mineralia Slovaca 37, 7-40.
SMITH, I.E.M., BLAKE, S., WILSON, C.J.N. & HOUGHTON, B.F. 2008: Deep-seated fractionation during the rise of a small-volume basalt magma batch: Crater Hill, Auckland, New Zealand. – Contributions to Mineralogy and Petrology 155(4), 511-527. https://doi.org/10.1007/s00410-007-0255-z
SZAKÁCS, A. & SEGHEDI, I. 1995: The Călimani-Gurghiu-Harghita volcanic chain, East Carpathians, Romania: volcanological features. – Acta Vulcanologica 7 (2),145–153.
SZAKÁCS, A. & SEGHEDI, I. 2013: The relevance of volcanic hazard in Romania: is there any? – Environmental Engineering and Management Journal 12, 125–135.
SZAKÁCS, A., SEGHEDI, I. & PÉCSKAY, Z. 1993: Peculiarities of South Harghita Mts. as the terminal segment of the Carpathian Neogene to Quaternary volcanic chain. – Revue Roumaine de Géologie Géophysique et Géographie, Géologie 37, 21–37.
SZAKÁCS, A., SEGHEDI, I. & PÉCSKAY, Z. 2002: The most recent volcanism in the Carpathian–Pannonian Region. Is there any volcanic hazard? – Geologica Carpathica. 53, 193–194.
TSCHEGG, C., NTAFLOS, T., KIRALY, F. & HARANGI, SZ. 2010: High temperature corrosion of olivine phenocrysts in Pliocene basalts from Banat, Romania. – Austrian Journal of Earth Sciences. 103, 101–110.
VALENTINE, G.A. & CONNOR, B.C. 2015: Basaltic Volcanic Fields. In: SIGURDSSON, H. (szerk.) The Encyclopedia of Volcanoes (Second Edition). Academic Press, London, 423-439. https://doi.org/10.1016/B978-0-12-385938-9.00023-7
VALENTINE, G.A. & HIRANO, N. 2010: Mechanisms of low-flux intraplate volcanic fields-Basin and Range (North America) and northwest Pacific Ocean. – Geology 38 (1), 55-58.
https://doi.org/10.1130/G30427.1
VILLEMANT, B., JAFFREZIC, H., JORON, J.L. & TREUIL, M. 1981: Distribution Coefficients of Major and Trace-Elements - Fractional Crystallization in the Alkali Basalt Series of Chaine-Des-Puys (Massif Central, France). – Geochimica et Cosmochimica Acta 45 (11), 1997-2016. https://doi.org/10.1016/0016-7037(81)90055-7
VINKLER, A.P., HARANGI, SZ., NTAFLOS, T. & SZAKÁCS, A. 2007: A Csomád vulkán (Keleti-Kárpátok) horzsaköveinek kőzettani és geokémiai vizsgálata—petrogenetikai következtetések. Földtani Közlöny 137 (1), 103–128.
WIJBRANS, J., NÉMETH, K., MARTIN, U. & BALOGH, K. 2007: 40Ar/39Ar geochronology of Neogene phreatomagmatic volcanism in the western Pannonian Basin, Hungary. – Journal of Volcanology and Geothermal Research 164 (4), 193 204. https://doi.org/10.1016/j.jvolgeores.2007.05.009
ZAJACZ, Z., KOVÁCS, I., SZABÓ, CS., HALTER, W. & PETTKE, T. 2007: Evolution of mafic alkaline melts crystallized in the uppermost lithospheric mantle: a melt inclusion study of olivine-clinopyroxenite xenoliths, northern Hungary. – Journal of Petrology 48 (5), 853-883. https://doi.org/10.1093/petrology/egm004