Recognition of mantle-derived rocks and their role in the evolution of geological thought

  • Antal Embey-Isztin Hungarian Natural History Museum
Keywords: history of science, mantel, peridotite

Abstract

Since the beginning of the 1960th two new events have revolutionized the evolution of geological thought. One of them, the plate tectonics, which is well known to the public, the other one is the recognition of mantle-derived rocks and the new results related to the investigation of the latter samples. Even if these results have also revolutionized the earth sciences, the real significance of this issue is known to a narrower group of specialists only. The present paper discusses the history of recognition of mantle samples and it tries to show the immense progress of our knowledge due to the detailed investigations of these rock samples.

References

ALLÈGRE, C. J. 1982:. Chemical geodynamics. — Tectonophysics 81(3-4), 109-132. https://doi.org/10.1016/0040-1951(82)90125-1
BOWEN N. L. 1928: Evolution of Igneous Rocks. — Princeton University Press, New Jersey
CONDIE K. C. & KRÖNER A. 2008: When did plate tectonics begin? Evidence from the geologic record. — Geological society of America special papers 440, 281-294. https://doi.org/10.1130/2008.2440(14)

CONDIE K. C. & SHEARER C. K. 2017: Tracking the evolution of mantle sources with incompatible element ratios in stagnant-lid and plate-tectonic planets. — Geochimica et Cosmochimica Acta 213, 47-62. https://doi.org/10.1016/j.gca.2017.06.034
DEMOUCHY S. & BOLFAN-CASANOVA N. 2016: Distribution and transport of hydrogen in the lithospheric mantle: A review. — Lithos 240, 402-425. https://doi.org/10.1016/j.lithos.2015.11.012
De ROEVER W.V. 1957: Sind die alpinotypen Peridotitmassen vielleicht tektonisch erfrachtete Bruchstuecke der Peridotitschale? — Geologische Rundschau 46(1), 137-146. https://doi.org/10.1007/bf01802890
DREIBUS G. WÄNKE H. 1987: Volatiles on Earth and Mars: A comparison. — Icarus 71, 225-240. https://doi.org/10.1016/0019-1035(87)90148-5
EMBEY-ISZTIN A. 1976a: Felsőköpeny eredetű lherzolitzárványok a magyarországi alkáliolivinbazaltos, bazanitos vulkanizmus kőzeteiben. — Földtani Közlöny 106, 42-51.
EMBEY-ISZTIN A. 1976b: Amphibolite/lherzolite composite xenolith from Szigliget, north of the Lake Balaton, Hungary. — Earth and Planetary Science Letters 31(2), 297-304. https://doi.org/10.1016/0012-821x(76)90223-5
ERNST T. 1935: Olivinknollen der Basalte als Bruchstücke alter Olivinfelsen. — Nachr. Ges. Wiss. Göttingen, Math.-physik. Kl., IV, Geol. Miner. 1, 147–154.
ERNST W. G. 2007: Speculations on evolution of the terrestrial lithosphere–asthenosphere system—plumes and plates. — Gondwana Research 11(1), 38-49. https://doi.org/10.1016/j.gr.2006.02.007

FORBES R. B. & KUNO H. 1967: Peridotite inclusions and basaltic host rocks. — In: Ultramafic and Related Rocks (ed P. J. WYLLIE), John Wiley Sons, Inc., New York 328-337.
GREEN, D. H. & RINGWOOD A. E. 1967: The genesis of basaltic magmas. — Contributions to Mineralogy and Petrology, 15(2), 103-190. https://doi.org/10.1007/bf00372052

HESS H. H. 1962: History of Ocean Basins. Petrologic Studies: a volume to honor A. F. Buddington 599-620.

HIRSCHMANN M.M. & KOHLSTEDT D. 2012: Water in Earth’s mantle. — Physics Today 65, 40–45. https://doi.org/10.1063/pt.3.1476
HOFMANN K . 1875—78: A déli Bakony bazalt-kőzetei. — Magyar Királyi Földtani Intézet Évkönyve 3 339-525.
HOLMES A. 1931: XVIII. Radioactivity and Earth Movements. — Transactions of the Geological Society of Glasgow 18(3), 559-606.
KAWABATA H., HANYU T., CHANG Q., KIMURA J.I., NICHOLS A.R. & TATSUMI Y. 2011: The petrology and geochemistry of St. Helena alkali basalts: evaluation of the oceanic crust-recycling model for HIMU OIB. — Journal of Petrology, 52(4), 791-838. https://doi.org/10.1093/petrology/egr003
KOCH S. (1966): Magyarország ásványai. Akadémiai Kiadó, Budapest, pp. 419.
KOVÁCS I., GREEN D.H., ROSENTHAL A., HERMANN J., O’NEILL H.S.C., HIBBERSON W.O. & UDVARDI B. 2012: An experimental study of water in nominally anhydrous minerals in the upper mantle near the water-saturated solidus. — Journal of Petrology, 53(10), 2067-2093. https://doi.org/10.1093/petrology/egs044
KUNO H. 1959: Origin of Cenozoic petrographic provinces of Japan and surrounding areas. — Bulletin of Volcanology 20(1), 37-76. https://doi.org/10.1007/bf02596571
KURZ M.D., JENKINS, W.J., HART S.R. and CLAGUE, D. 1983: Helium isotopic variations in volcanic rocks from Loihi Seamount and the Island of Hawaii. — Earth and Planetary Science Letters 66, 388-406. https://doi.org/10.1016/0012-821x(83)90154-1
LACROIX A. 1893: Les enclaves des roches volcaniques. — Annales de l'Académie de Mâcon. TX. Ed. Protat frères. Mâcon, pp. 710
LE ROUX V., BODINIER J. L., TOMMASI A., ALARD O., DAUTRIA J. M., VAUCHEZ A. & RICHES A. J. V. 2007: The Lherz spinel lherzolite: refertilized rather than pristine mantle. — Earth and Planetary Science Letters 259 (3), 599-612. https://doi.org/10.1016/j.epsl.2007.05.026
MARTIN H., MOYEN J. F., GUITREAU M., BLICHERT-TOFT J., & LE PENNEC J. L. 2014: Why Archaean TTG cannot be generated by MORB melting in subduction zones. —Lithos 198, 1-13. https://doi.org/10.1016/j.lithos.2014.02.017

MENZIES M. A. 1983: Mantle ultramafc xenoliths in alkaline magmas: evidence for mantle heterogeneity modified by magmatic activity. — In: C.J. Hawkesworth, M.J. Norry (Eds),Continental Basalts and Mantle Xenoliths. Shiva Publishing, Cheshire, U.K., 92-110
PORCELLI D., ELLIOTT T. 2008:The evolution of helium isotopes in the upper mantle and the generation of isotopic anomalies. — Earth Planetary Science Letters 269, 175–185. https://doi.org/10.1016/j.epsl.2008.02.002
RINGWOOD A. E. 1962: A model for the upper mantle. Journal of Geophysical Research, 67(2), 857-867. https://doi.org/10.1029/jz067i002p00857
ROLLINSON H. 2007: Early Earth Systems: A Geochemical Approach. — Malden,
Massachusetts, Blackwell, 285 p. https://doi.org/10.1017/s0016756808004640
ROSS C.S., FOSTER M.D. & MYERS A.T. 1954: Origin of dunites and of olivine-rich inclusions in basaltic rocks. — American Mineralogist 39(9-10), 693-737.
SOLOMATOV V. S. & MORESI L. N. 1996: Stagnant lid convection on Venus. — Journal of Geophysical Research: Planets 101(E2), 4737-4753. https://doi.org/10.1029/95je03361

STERN R. J. 2008: Modern-style plate tectonics began in Neoproterozoic time: an alternative interpretation of Earth's tectonic history. — Geological Society of America Special Papers 440, 265-280. https://doi.org/10.1130/2008.2440(13)

TURNER F. J & VERHOOGEN J. 1960: Igneous and metamorphic petrology. — McGraw-Hill Book Company, INC. Second Edition, New York Toronto London pp. 694.
TURNER F. J. 1942: Preferred orientation of olivine crystals in peridotites. — Transactions of the Royal Society of New Zealand 72, 280–300.
VINE F. J. & MATTHEWS D. H. 1963: Magnetic anomalies over oceanic ridges. — Nature 199(4897), 947–949. https://doi.org/10.1038/201591a0
VITÁLIS I. 1911: A balatonvidéki bazaltok. A Balaton tudományos tanulmányozásának eredményei. A balatonvidék bazaltos bombái. I. rész 6. fejezet. Budapest
WAGER L. R. 1958: Beneath the Earth's crust. — Advancement of Science 15, 31-45.
ZINDLER A. & HART S. 1986: Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14(1), 493-571. https://doi.org/10.1146/annurev.ea.14.050186.002425
Published
2017-12-06
How to Cite
Embey-IsztinA. (2017). Recognition of mantle-derived rocks and their role in the evolution of geological thought. Földtani Közlöny, 147(4), 415-422. https://doi.org/10.23928/foldt.kozl.2017.147.4.415
Section
Review