Comparison of CT scanned Lindner tested timber samples and cone calorimeter measurements
Abstract
When designing wood materials for fire resistance, the charring rate is a critical parameter. However, the values defined in the relevant standards are not always determined in favour of safety. Determining the actual charring rate for a specific material using standard approved methods (e.g., cone calorimeter, large-scale tests) is costly, so we sought an alternative using small-scale testing. The Lindner method may be suitable for determining the charring rate, but it needs to be compared with standardized testing (e.g., cone calorimeter) to establish correlations between the results of the two methods. We examined the relationship between the charring tests performed with the cone calorimeter and the Lindner method on solid wood samples and plywood. Based on our investigations, the results of these tests show a strong correlation. In earlier research, we established that computed tomography (CT) imaging is suitable for spatial analysis of burned solid wood samples. In this study, we analysed the applicability of CT imaging for burned plywood samples using scans of burned plywood specimens. We found that the segmentation algorithm used for solid wood is not suitable for examining plywood without additional shape filters due to the intersection of gaps formed in the internal layers during production with the burned volume.
References
MSZ EN 1995-1-2, Eurocode 5: Faszerkezetek tervezése. 1-2 rész: Általános szabályok. Szerkezetek tervezése tűzhatásra, 2013.
P. B. Cachim és J.-M. Franssen, „Assessment of Eurocode 5 Charring Rate Calculation Methods”, Fire Technol, köt. 46, sz. 1, o. 169–181, jan. 2010, https://doi.org/10.1007/s10694-009-0092-x.
ISO 5660-1, Reaction-to-fire tests - Heat release, smoke production and mass loss rate - Part 1: Heat release (cone calorimeter method) and smoke production rate (dynamic measurement). 2015.
A. Law, A. I. Bartlett, R. Hadden, és N. Butterworth, „Challenges and Opportunities for Fire Safety in Tall Timber Construction”, előadás Second International Tall Building Fire Safety Conference, Greenwich, London, 2014.
MSZ 9607, Égéskésleltető szerrel kezelt fa és fa alapanyagú építési termékek vizsgálata. A kezelés hatékonyságának értékelése Lindner-módszer alapján. 2020.
A. Biró és É. Lublóy, „CT imaging of Lindner tested, burnt timber”, J Therm Anal Calorim, köt. 149, sz. 3, o. 909–920, febr. 2024, https://doi.org/10.1007/s10973-023-12747-4.
W. Thornton, „Relation of Oxigen to the Heat to the Combustion of Organic Compounds”, Philosophical Magazine and Journal of Science, köt. 33, 1917.
C. Hugget, „Estimation of rate of heat release by means of oxygen consumption measurements”, 1980.
M. Janssens, „Calorimetry”, in SFPE Handbook of Fire Protection Engineering, Fifth edition., Springer New York LLC, 2016, o. 905–951.
V. Babrauskas, „The Cone Calorimeter”, in SFPE Handbook of Fire Protection Engineering, Fifth edition., Springer New York LLC, 2016, o. 952–980.
R. C. Stein, M. Petkovski, D. L. Engelberg, F. Leonard, és P. J. Withers, „Characterizing the effects of elevated temperature on the air void pore structure of advanced gas-cooled reactor pressure vessel concrete using x-ray computed tomography”, EPJ Web of Conferences, köt. 56, o. 04003, 2013, https://doi.org/10.1051/epjconf/20135604003.
D. C. González, Á. Mena, J. Mínguez, és M. A. Vicente, „Influence of air-entraining agent and freeze-thaw action on pore structure in high-strength concrete by using CT-Scan technology”, Cold Regions Science and Technology, köt. 192, o. 103397, dec. 2021, https://doi.org/10.1016/j.coldregions.2021.103397.
B. Song, D. Nakamura, T. Kawaguchi, S. Kawajiri, és D. Rui, „Quantifying the shear behavior of fine-grained soil with herbaceous plant roots under freeze-thaw conditions using X-ray CT scan”, Soil and Tillage Research, köt. 246, o. 106326, febr. 2025, https://doi.org/10.1016/j.still.2024.106326.
X. Sun, X. Li, B. Zheng, J. He, és T. Mao, „Study on the progressive fracturing in soil and rock mixture under uniaxial compression conditions by CT scanning”, Engineering Geology, köt. 279, o. 105884, dec. 2020, https://doi.org/10.1016/j.enggeo.2020.105884.
É. Lublóy, D. Ambrus, és T. Földes, „Hézagtartalom mérése aszfalt próbatesteken CT-vel”, Magyar építőipar, köt. 64, sz. 4, o. 161–164, 2014.
F. Longuetaud és mtsai., „Automatic knot detection and measurements from X-ray CT images of wood: A review and validation of an improved algorithm on softwood samples”, Computers and Electronics in Agriculture, köt. 85, o. 77–89, júl. 2012, https://doi.org/10.1016/j.compag.2012.03.013.
P. Jacquin, F. Mothe, F. Longuetaud, A. Billard, B. Kerfriden, és J. M. Leban, „CarDen: A software for fast measurement of wood density on increment cores by CT scanning”, Computers and Electronics in Agriculture, köt. 156, o. 606–617, jan. 2019, https://doi.org/10.1016/j.compag.2018.12.008.
K. Kobayashi, S. W. Hwang, T. Okochi, W. H. Lee, és J. Sugiyama, „Non-destructive method for wood identification using conventional X-ray computed tomography data”, Journal of Cultural Heritage, köt. 38, o. 88–93, júl. 2019, https://doi.org/10.1016/j.culher.2019.02.001.
A. Krähenbühl, B. Kerautret, I. Debled-Rennesson, F. Mothe, és F. Longuetaud, „Knot segmentation in 3D CT images of wet wood”, Pattern Recognition, köt. 47, sz. 12, o. 3852–3869, dec. 2014, https://doi.org/10.1016/j.patcog.2014.05.015.
A. Gupta és S. Mutreja, „Mass Timber Construction Market Size, Share, Competitive Landscape and Trend Analysis Report by Construction Type, By Material, By Application : Global Opportunity Analysis and Industry Forecast, 2022-2031”, AlliedMarketResearch. [Online]. Elérhető: https://www.alliedmarketresearch.com/mass-timber-construction-market-A16621 (2024.03.21.)
Copyright (c) 2024 Defence Science
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.