Presentation of the result of a GIS-based flash flood risk mapping methodology
Abstract
Flash floods resulting from thunderstorms within mesoscale convective systems (MCS) are considered a significant challenge for all organisations involved in flood defence. As a result of such storm-induced events, which may cause flash floods, increasing emphasis is being placed on risk analysis and assessment systems, as well as on flood risk mapping methodologies. In the present study, the results of a GIS-based flood risk mapping methodology are presented for a study area in Northern Hungary. The methodology is based on vector and raster geospatial datasets and remote sensing data widely referenced in the scientific literature. It is supplemented with area-specific databases, including descriptive data from the forestry database provided by the National Land Centre and the regional digital e-Soter soil texture map. Since varying levels of importance may be assigned to these datasets in the context of a flash flood event, the Analytical Hierarchy Process (AHP) decision matrix was applied to determine their weighting, enabling the risk of flash flood events in real spatial contexts to be modelled as accurately as possible. The resulting risk maps were produced at a spatial resolution of 5 m, providing high-detail interpretation and allowing their direct application in practical flood defence operations. The methodology was compared with another national-scale flood risk assessment approach based on different methodological principles. It was found that the most excellent spatial agreement between the map outputs occurred under the most unfavourable assumptions; therefore, a detailed analysis of the higher-risk areas is also presented. The mapping methodology and its results are recommended for application by active participants in flood defense.
References
Koris K. (2021): Magyarország kisvízfolyásainak árvizei. (Elektronikus változat.) 1-756 o. Országos Vízügyi Főigazgatóság Budapest. https://vpf.vizugy.hu/reg/ovf/doc/koris_bala-tonyi.pdf
Országos Vízügyi Főigazgatóság – OVF (2024/47) - 47 /2024 számú utasítása az Országos Vízügyi Főigazgatóság és a Vízügyi Igazgatóságok Magyarország hegy és dombvidéki kisvízfolyásainak árvízszámítási segédletének használatáról
Kaliczka L. (1998). Hegy és dombvidéki vízrendezés, Baja pp. 90-95.
Balatonyi, L., Lengyel, B., Berger, Á. (2022). Natura-based solution as water management measure in Hungary. Modern Geográfia, Vol. 17, Issue 1, pp. 73-85. https://doi.org/10.15170/MG.2022.17.01.05
Czigány, S., Pirkhoffer, E., Geresdi, I. (2009). Environmental impacts of flash floods in Hungary. In Flood Risk Management: Research and Practice., Taylor & Francis Group, pp. 1439–1447. https://doi.org/10.1201/9780203883020.ch169
Horváth Á. (2007): A mezoskálájú folyamatok szerepe a konvektív felhőképződésben, 32. Meteorológia Tudományos Napok, MTA Meteorológiai Tudományos Bizottsága, ISBN 978-963-7702-97-6 pp 83.- 94.
Sarkadi N., Pirkhoffer E., Lóczy D., Balatonyi L., Geresdi I., Fábián Sz., Varga G., Balogh R., Gradwohl-Valkay A., Halmai Á., Czigány Sz. (2022). Generation of a flood susceptibility map of evenly weighted conditioning factors for Hungary. Geographica Pannonica, 26(3), 200-214. https://doi.org/10.5937/gp26-34866
Dobai, A., Vágó, J., Hegedűs, A., Kovács, K.Z., Pecsmány, P., Seres, A., Dobos, E. (2024). GIS and soil property-based development of runoff modeling to assess the capacity of urban drainage systems for flash floods, Hungarian Geographical Bulletin, 73(4), pp. 379-394. https://doi.org/10.15201/hungeobull.73.4.3
Lénárt L., Hernádi B., Kovács P. , Mátyás G. (2014): A Szinva-völgyi árvíz-előrejelző rendszer kidolgozásának megvalósítási tanulmány-terve. – Kézirat, Miskolci Egyetem, 140 p
Balatonyi L. 2015 Pécsi Tudomány Egyetem Természettudományi Kar Földtudományok Doktori Iskola, PhD értekezés Árvízhozam előrejelzés optimalizálása középhegységi és dombvidéki kisvízgyűjtőkre 18p.
Youssef A.M., Pradhan B., Hassan A.M. (2011). Flash flood risk estimation along the St. Katherine road, southern Sinai, Egypt using GIS based morphometry and satellite imagery . Environmental Earth Sciences 62 (3), 611-623.https://doi.org/10.1007/s12665-010-0551-1
Dobai A., Dobos E. (2022). Hegy és dombvidéki kisvízgyűjtőkön kialakuló árhullámok elleni védekezés támogatása térinformatikai módszerekkel. Debreceni Egyetem, Térinformatikai Konferencia és Szakkiállítás kiadványa, pp. 109-117. https://doi.org/10.35925/j.multi.2022.2.8
Ngo, P.T., Hoang, N., Pradhan, B. (2018). A Novel Hybrid Swarm Optimized Multilayer Neural Tropical Areas Using Sentinel-1 SAR Imagery and geospatial data. Sensors, 2018 Oct 31;18(11):3704. https://doi.org/10.3390/s18113704
Dobai, A., Dobos, E. (2025). A villámárvíz kockázati térképezési módszertan fejlesztése Észak-Magyarországi dombsági területeken. Hidrológiai Közlöny. 105. 24-37. 10.59258/hk.19231.
Dobos, E., Daroussin, J., Montanarella, L. (2007). A quantitative procedure for building physiographic units for the European SOTER database. In Digital Terrain Modelling. Lecture Notes in Geoinformation and Cartography. Ed.: PECKHAM, R. and JORDAN GY., Berlin, Heidelberg, Springer, pp. 227-258. https://doi.org/10.1007/978-3-540-36731-4_10
Eroglu, E., Meral, A. (2021). Evaluation of flood risk analyses with AHP, Kriging, and weighted sum models: example of Çapakçur, Yeşilköy, and Yamaç microcatchments, Environmental Monitoring and Assessment,193(8). https://doi.org/10.1007/s10661-021-09282-w
Jourde, H., Roesch, A., Gunot, V., Bailly-Compte, V. (2005). Dynamics and contribution of karst groundwater to surface flow during Mediterranean flood, Proc.Int.Symp.Water Resour. pp. 133–138. https://doi.org/10.1007/s00254-006-0386-y
Vágó, J., Dobos, E., Blistan, P., Zelenakova, M.,Ladányi, R., Kiss, L. (2019). Flood- and logistical modeling in the Hernad watershed, Műszaki Tudomány az Észak-keleti magyarországi régióban, Conference Book,pp. 420-423. https://doi.org/10.21791/IJEMS.2019.4.20.
Alessandro, G.C., Javier, H., Ana, L.V.A. (2002). - Guidelines on Flash Flood Prevention and Mitigation – NEDIES project. EUR 20386 EN, p. 64.
Copyright (c) 2025 Defence Science

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.