Environmental security aspects of the removal of volatile organic compounds

  • Bencsik Dániel Nemzeti Közszolgálati Egyetem, Katonai Műszaki Doktori Iskola
Keywords: environmental security, micropollutants, modelling, VOC, wastewater

Abstract

With the growing demand for sustainable drinking water supplies and agricultural applications, the practice of wastewater reuse is becoming increasingly important. It contributes to reducing our dependence on limited freshwater sources and mitigating the effects of climate change by conserving water resources. Regarding the recycling of wastewater, however, it must be ensured that hazardous pollutants do not reach consumers. This paper aims to present an application of mathematical modelling to quantify the removal of volatile organic components during treatment and reuse, with regard to operating costs and treated water quality. The study features the model setup of a biological wastewater treatment plant – with post-treatment supplemented by activated carbon filters –, with the goal of quantifying the impact of process parameters on operating and maintenance costs, among effluent water quality. Results of the model simulation demonstrate that increasing the retention time of biomass reduces activated carbon consumption, especially within a range shorter than 6 days; however, from the perspective of environmental security, an operating status below this value should be avoided due to an exponential increase in micropollutant concentrations. Sensitivity analysis has shown that energy demand can be optimised by operating the facility with a sludge residence time in the range of 10-12 days – provided that air supply to biological treatment trains is efficiently regulated. Model runs have shown that, in case of operational emergency scenarios, intensified aeration is a swift and useful operator intervention that provides more efficient stripping[1] of volatile pollutants before loading onto activated carbon columns. The research highlights the potential of dynamic modelling in implementing sustainable operating conditions and emergency planning in wastewater reuse.

References

S. M. Scheierling, C. R. Bartone, D. D. Mara, és P. Drechsel, Improving Wastewater Use in Agriculture: An Emerging Priority. World Bank Policy Research Working Paper Series, 5412, Washington, DC, USA: The World Bank, 2010, https://doi.org/10.1596/1813-9450-5412

S.M. Scheierling, C. R. Bartone, D. D. Mara, és P. Drechsel, “Towards an agenda for improving wastewater use in agriculture”, Water International, vol. 36, no. 4, pp. 420–440, 2011, https://doi.org/10.1080/02508060.2011.594527

S. Ofori, A. Puškáčová, I. Růžičková, és J. Wanner, “Treated wastewater reuse for irrigation: Pros and cons”, Science of The Total Environment, vol. 760, 144026, 2021, https://doi.org/10.1016/j.scitotenv.2020.144026

Z. Sheikholeslami, D. Y. Kebria, és F. Qaderi, “Nanoparticle for degradation of BTEX in produced water; an experimental procedure”, Journal of Molecular Liquids, vol. 264, pp. 476–482, 2018, https://doi.org/10.1016/j.molliq.2018.05.096

C. J. Davidson, J. H. Hannigan, és S. E. Bowen, “Effects of inhaled combined Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX): Toward an environmental exposure model”, Environmental Toxicology and Pharmacology, vol. 81, 103518, 2021, https://doi.org/10.1016/j.etap.2020.103518

P. Jiang, C.-J. Tzeng, C.-C. Hsieh, és M. K. Stenstrom, “Modeling VOC Emissions in the High-Purity Oxygen Activated Sludge Process”, Journal of Environmental Engineering, vol. 136, no. 11, pp. 1189–1196, 2010, https://doi.org/10.1061/(ASCE)EE.1943-7870.0000273

J. M. M. Mello, H. L. Brandao, A. Valerio, A. A. U. de Souza, D. de Oliveira, és A. da Silva, “Biodegradation of BTEX compounds from petrochemical wastewater: Kinetic and toxicity”, Journal of Water Process Engineering, vol. 32, 100914, 2019, https://doi.org/10.1016/j.jwpe.2019.100914

A. Trusek-Holownia és A. Noworyta, “Advanced treatment of wastewater with BTEX”, Desalination and Water Treatment, vol. 50, pp. 440–445, 2012, https://doi.org/10.1080/19443994.2012.705089

A. Takáčová, M. Smolinská, M. Semerád, és P. Matúš, “Degradation of BTEX by microalgae Parachlorella kessleri”, Petroleum & Coal, vol. 57, no. 2, pp. 101-107, 2015 [Online]. Elérhetőség: https://www.vurup.sk/wp-content/uploads/dlm_uploads/2017/07/pc_2_2015_takacova_317.pdf (2024.12.30.)

H. Anjum, K. Johari, N. Gnanasundaram, M. Ganesapillai, A. Arunagiri, I. Regupathi, és M. Thanabalan, “A review on adsorptive removal of oil pollutants (BTEX) from wastewater using carbon nanotubes”, Journal of Molecular Liquids, vol. 277, pp. 1005–1025, 2019, https://doi.org/10.1016/j.molliq.2018.10.105

K. C. Lee, B. E. Rittmann, J. Shi, és D. McAvoy, “Advanced steady-state model for the fate of hydrophobic and volatile compounds in activated sludge”, Water Environment Research, vol. 70, no. 6, pp. 1118–1131, 1998, https://doi.org/10.2175/106143098X123480

M. Pomiès, C. Wisniewski, J. M. Choubert, és M. Coquery, “Modelling of micropollutant removal in biological wastewater treatments: A review”, Science of The Total Environment, vol. 443, pp. 733–748, 2012, https://doi.org/10.1016/j.scitotenv.2012.11.037

D. Orhon és E. U. Çokgör, “COD fractionation in wastewater characterization—The state of the art”, Journal of Chemical Technology & Biotechnology, vol. 68, no. 3, pp. 283–293, 1999, https://doi.org/10.1002/(SICI)1097-4660(199703)68:3<283::AID-JCTB633>3.0.CO;2-X

G. G. Patry és I. Takács, “Settling of flocculent suspensions in secondary clarifiers”, Water Research, vol. 26, no. 4, pp. 473–479, 1992, https://doi.org/10.1016/0043-1354(92)90048-9

M. Henze, W. Gujer, T. Mino, T. Matsuo, M. C. Wentzel, G. v. R. Marais, és M. C. M. Van Loosdrecht, “Activated Sludge Model No.2d, ASM2D”, Water Science & Technology, vol. 39, no. 1, pp. 165–182, 1999, https://doi.org/10.2166/wst.1999.0036

M. Arnell, M. Ahlström, C. Wärff, R. Saagi, és U. Jeppsson, “Plant-wide modelling and analysis of WWTP temperature dynamics for sustainable heat recovery from wastewater”, Water Science & Technology, vol. 84, no. 4, pp. 1023–1036, 2021, https://doi.org/10.2166/wst.2021.277

L. Rieger, S Gillot, G. Langergraber, T. Ohtsuki, A. Shaw, és I. Takács, Guidelines for Using Activated Sludge Models. London, UK: IWA Publishing, 2012.

M. Henze, L. Grady, Jr. W. Gujer, G. v. R. Marais, és T. Matsuo, Activated Sludge Model No 1. London, UK: IAWPRC Publishing, 1987 [Online]. Elérhetőség: https://www.researchgate.net (2024.12.30.)

Dynamita, Sumo22 User Manual. Sigale, France: Dynamita SARL, 2022 [Online]. Elérhetőség: https://wiki.dynamita.com/en/introduction (2024.12.30.)

M. Kasi, T. Wadhawan, J. McEvoy, G. Padmanabhan, és E. Khan, “Effect of carbon source during enrichment on BTEX degradation by anaerobic mixed bacterial cultures”, Biodegradation, vol. 24, pp. 279–293, 2013, https://doi.org/10.1007/s10532-012-9586-1

D. Bencsik, T. Wadhawan, F. Házi, és T. Karches, “Plant-Wide Models for Optimizing the Operation and Maintenance of BTEX-Contaminated Wastewater Treatment and Reuse”, Environments, vol. 11, no. 5, 88, 2024, https://doi.org/10.3390/environments11050088

R. Higbie, “The rate of absorption of a pure gas into a still liquid during short periods of exposure”, Transactions of the American Institute of Chemical Engineers, vol. 31, pp. 365–388, 1935.

R. Sander, “Compilation of Henry’s law constants (version 4.0) for water as solvent”, Atmospheric Chemistry and Physics, vol. 15, no. 8, 4399–4981, 2015, https://doi.org/10.5194/acp-15-4399-2015

M. K. Stenstrom, Westpoint Treatment Plant oxygen process modeling. UCLA-ENG 90-17, Los Angeles, California: UCLA School of Engineering and Applied Science, 1990 [Online]. Elérhetőség: https://www.researchgate.net (2024.12.30.)

R. Nikolova-Kuscu, L. Fonseca, D. Hume, és S. Bungay, “Using mechanistic models for predicting nitrous oxide emissions from the activated sludge process”, Előadás: Water New Zealand Conference & Expo 2024, Claudelands, Kirikiriroa Hamilton: Water New Zealand, 2024.09.25. [Online]. Elérhetőség: https://www.waternz.org.nz/Article?Action=View&Article_id=2895 (2024.12.30.)

S. Myers, A. Mikola, K. Blomberg, A. Kuokkanen, és D. Rosso, “Comparison of methods for nitrous oxide emission estimation in full-scale activated sludge”, Water Science & Technology, vol. 83, no. 3, pp. 641–651, 2021, https://doi.org/10.2166/wst.2021.033 (2024.12.30.)

J. Alex, L. Benedetti, J. B. Copp, K. V. Gernaey, U. Jeppsson, I. Nopens, M.-N. Pons, L. Rieger, C. Rosen, J.P. Steyer, P. Vanrolleghem, és S. Winkler, Benchmark Simulation Model No. 1 (BSM1). Lund, Sweden: Lund University, 2008 [Online]. Elérhetőség: https://www.researchgate.net (2024.12.30.)

H. Vanhooren és K. Nguyen, Development of a simulation protocol for evaluation of respirometry-based control strategies. Report University of Gent, Belgium and University of Ottawa, Canada, 1996.

B. Mrowiec, “Effect of BTX on Biological Treatment of Sewage”, Environment Protection Engineering, vol. 35, no. 2, 197–206, 2009 [Online]. Elérhetőség: https://epe.pwr.edu.pl/2009/Mrowiec_2-2009b.pdf (2024.12.30.)

R. C. Smith, S. O. Elger, és S. Mleziva, “Implementation of solids retention time (SRT) control in wastewater treatment”, Xylem Anal, vol. 20, pp. 1–6, 2015.

F. Benstoem, A. Nahrstedt, M. Boehler, G. Knopp, D. Montag, H. Siegrist, és J. Pinnekamp, “Performance of granular activated carbon to remove micropollutants from municipal wastewater—A meta-analysis of pilot- and large-scale studies”, Chemosphere, vol. 185, pp. 105–118, 2017, https://doi.org/10.1016/j.chemosphere.2017.06.118

Y. Zha, Y. Wang, S Liu, S. Liu, Y. Yang, H. Jiang, Y. Zhang, L. Qi, és H. Wang, “Adsorption characteristics of organics in the effluent of ultra-short SRT wastewater treatment by single-walled, multi-walled, and graphitized multi-walled carbon nanotubes”, Scientific Reports, vol. 8, no. 1, 17245, 2018, https://doi.org/10.1038/s41598-018-35374-8

L. Li, C. Yin, Q. He, és L. Kong, “First flush of storm runoff pollution from an urban catchment in China”, Journal of Environmental Sciences, vol. 19, no. 3, pp. 295–299, 2007, https://doi.org/10.1016/S1001-0742(07)60048-5

L. Földi, T. Berek, és J. Padányi. (2022) “Hungary’s Energy and Water Security Countermeasures as Answers to the Challenges of Global Climate Change”, AARMS – Academic and Applied Research in Military and Public Management Science, vol. 20, no. 2, pp. 87–96, 2022, https://doi.org/10.32565/aarms.2021.2.7

E. Torfs, N. Nicolaï, S. Daneshgar, J. B. Copp, H. Haimi, D. Ikumi, B. Johnson, B. B. Plósz, S. Snowling, L. R. Townley, B. Valverde-Pérez, P. A. Vanrolleghem, L. Vezzaro, és I. Nopens, “The Transition of WRRF Models to Digital Twin Applications”, Water Science & Technology, vol. 85, no. 10, pp. 2840–2853, 2022, https://doi.org/10.2166/wst.2022.107

Published
2025-03-31
How to Cite
DánielB. (2025). Environmental security aspects of the removal of volatile organic compounds. Defence Science, 10(1), 93-108. https://doi.org/10.61790/vt.2025.18214
Section
Articles