The biological mechanisms of the antiresorptive therapy of osteoporosis, and the antiresorptive drug related osteonecrosis of jaws

Keywords: osteoporosis, antirezorptive therapy, coupled bone remodelling, medication related osteonecrosis of jaws

Abstract

Osteoporosis (OP) is one of the most common debilitating conditions in the population over the age of 50. Its pathomechanism
is still not fully understood. Nowadays, in elderly population, the most common approach to control bone loss is
blocking osteoclastic activity by administration of antiresorptive drugs. Such drugs are also used for the management of
metastatic bone cancer, hypercalcemia of malignancy, and other conditions with elevated osteoclastic activity. Bisphosphonate
therapy is the first choice, but recently monoclonal antibody to RANKL (receptor activator for nuclear factorkappa
B ligand), has also been used; each with distinct mechanism of actions. Bisphosphonates irreversibly adhere to
bone minerals, and during bone remodelling, osteoclasts internalise and metabolise matrix-bound bisphosphonates.
Subsequently, they damage cytoskeletal organization and ruffled border integrity, resulting in the eventual osteoclast
apoptosis. On the other hand, denosumab blocks osteoclast neogenesis by neutralizing RANKL, which is necessary for
osteoclast precursor differentiation into mature osteoclasts. Thus, bisphosphonates acts on mature osteoclasts, while
denosumab hinders osteoclast formation from its precursors. Although their antiresorptive actions are different, recent
case reports and controlled clinical studies indicated that administration of either of these may be associated with development
of osteonecrosis of the jaw (ONJ). The fact that ONJ is associated with both bisphosphonates and denosumab
convincingly suggests that osteoclast suppression is essential in the pathomechanism of ONJ. The evidence-based,
cause-related therapy for MRONJ still remains missing. Many alternative therapeutic approaches has recently been tested
and published, amongst them, using recombinant human parathyroid hormone (rh-PTH, teriparatide) may become a
promising treatment modality

References

Siddiqui JA, Partridge NC. Physiological bone remodeling: systemic regulation and growth factor involvement physiology (Bethesda) 2016; 31: 233-245. https://doi.org/10.1152/physiol.00061.2014

Raisz LG, Kream BF. Regulation of bone formation New Engl. J. Med 1983;309:83-89. https://doi.org/10.1056/NEJM198307143090206

Jaworski ZGF Coupling of bone formation to bone resorption: A broader view. Calcif Tissue Int. 1984;36.531-535. https://doi.org/10.1007/BF02405360

Hernlund E, Svedbom A, Ivergård M, et al. Osteoporosis in the European Union: medical management, epidemiology and economic burden. Archives of Osteoporosis 2013; 8:136. https://doi.org/10.1007/s11657-013-0136-1

Drake MT, Clarke BL, Khosla S. Bisphosphonates: mechanism of action and role in clinical practice. Mayo Clin Proc. 2008 Sep;83(9):1032-45. https://doi.org/10.4065/83.9.1032

Kenkre JS, Bassett J. The bone remodeling cycle. Ann Clin Biochem. 2018 May;55:308-327. https://doi.org/10.1177/0004563218759371

Wong GL, Cohn DV. Target cells in bone for parathyroid hormone and calcitonin are different: enrichment for each cell type by sequential digestion of mouse calvarias and selective adhesion in polymeric surfaces. Proc. Natl. Acad. Sci. 1975;72: 3167-3171 https://doi.org/10.1073/pnas.72.8.3167

Ono T, Nakashima T. Recent advances in osteoclast biology. Histochem Cell Biol. 2018;149: 325-341. https://doi.org/10.1007/s00418-018-1636-2

Chambers TJ. Osteoblasts releases osteoclast from calcitonin-induced quiescenence. J. Cell Sci. 1982,57: 247-260 https://doi.org/10.1242/jcs.57.1.247

Chambers TJ, McSheeny PMJ, Thomson BM, et.al. The effect of calcium regulating hormones and prostaglandins on bone resorption by osteoclasts disaggregated from neonatal rabbit bones. Endocrinology 1985;116:234-349 https://doi.org/10.1210/endo-116-1-234

Chambers TJ, Fuller K. Bone cells predispose bone surfaces to resorption by exposure of mineral to osteoclastic contact J Cell Sci . 1985 Jun;76:155-165. https://doi.org/10.1242/jcs.76.1.155

Teitelbaum SL . Bone resorption by osteoclasts . Science 2000;289:1504 - 1508. https://doi.org/10.1126/science.289.5484.1504

Yasuda H, Shima N, Nakagawa N, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 1998;95:3597-3602. https://doi.org/10.1073/pnas.95.7.3597

Lerner UH . New molecules in the tumor necrosis factor ligand and receptor superfamilies with importance for physiological and pathological bone resorption . Crit Rev Oral Biol Med 2004;15 : 64 - 81. https://doi.org/10.1177/154411130401500202

Simonet WS, Lacey DL, Dunstan CR, et. al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density . Cell 1997;89:309 - 319. https://doi.org/10.1083/jcb.145.3.527

Lacey DL, Timms E, Tan HL, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation . Cell 1998 : 93 : 165 – 176. https://doi.org/10.1083/jcb.145.3.527

Nagasawa T, Kiji M, Yashiro R, Hormdee D, et al. Roles of receptor activators of nuclear factors kB ligand (RANKL) and osteoprotegerin in periodontal health and disease. Periodontol 2000 2007;43:65-84. https://doi.org/10.1111/j.1600-0757.2006.00185.x

Liu D, Xu JK, Figliomeni L, et. al. Expression of RANKL and OPG mRNA in periodontal disease: possible involvement in bone destruction . Int J Mol Med 2003 : 11 : 17 - 21. https://doi.org/10.3892/ijmm.11.1.17

Taubman MA, Kawai T. Involvement of T-lymphocytes in periodontal disease and in direct and indirect induction of bone resorption. Crit Rev Oral Biol Med 2001: 12: 125-135. https://doi.org/10.1177/10454411010120020301

Kong Y-Y, Feige U, Sarosi I, et.al. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 1999; 402: 304-309. https://doi.org/10.1038/46303

Teng YT, Nguyen H, Gao X, et. al. Functional human T-cell immunity and osteoprotegerin ligand control alveolar bone destruction in periodontal infection. J Clin Invest 2000; 106: R59-R67. https://doi.org/10.1172/JCI10763

Pfeilshifter J, Laukhuf F, Muller-Beckmann B, et al. Parathyroid hormone increases the concentration of insulin-like growth factor-1 and transforming growth factor beta-1 in rat bone. J Clin Invest 1995; 96(2):767- 774. https://doi.org/10.1172/JCI118121

Wu Y, Kumar R. Parathyroid hormone regulates transforming growth factor beta1 and beta2 synthesis in osteoblasts via divergent signaling pathways. J Bone Miner Res 2000; 15(5):879-884 https://doi.org/10.1359/jbmr.2000.15.5.879

Siddiqui JA, Partridge NC. Physiological Bone Remodeling: Systemic Regulation and Growth Factor Involvement. Physiology (Bethesda). 2016 May;31(3):233-45. https://doi.org/10.1152/physiol.00061.2014

Wein MN, Kronenberg HM. Regulation of Bone Remodeling by Parathyroid Hormone. Cold Spring Harb Perspect Med. 2018 Aug 1;8(8):a031237.

https://doi.org/10.1101/cshperspect.a031237

Väänänen HK, Härkönen PL. Estrogen and bone metabolism. Maturitas. 1996 May;23 Suppl:S65-9. https://doi.org/10.1016/0378-5122(96)01015-8

Consensus Development Conference Diagnosis, prophylaxis, and treatment of osteoporosis. https://doi.org/10.1016/0002-9343(93)90218-E

World Health Organization - Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser 1994;843:1-129.

Akkawi I., Zmerly H. Osteoporosis: current concepts. Joints. 2018;6:122-127. https://doi.org/10.1055/s-0038-1660790

Morrison NA, Qi JC, Tokita A, Kelly PJ, Crofts L, Nguyen TV, Sambrook PN, Eisman JA. Prediction of bone density from vitamin D receptor alleles. Nature. 1994 Jan 20;367(6460):284-7. https://doi.org/10.1038/367284a0

Kanis JA, Cooper C, Rizzoli R. et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporosis International 2019; 30:3-44 https://doi.org/10.1007/s00198-018-4704-5

Wright NC, Saag KG, Dawson-Hughes B, et al. The impact of the new National Bone Health Alliance (NBHA) diagnostic criteria on the prevalence of osteoporosis in the USA. Osteoporos Int. 2017; 28: 1225 -1232. https://doi.org/10.1007/s00198-016-3865-3

Wright NC, Looker AC, Saag KG, et al. The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res 2014;29:2520-2526. https://doi.org/10.1002/jbmr.2269

El-Ghorab Cosman F, de Beur SJ, LeBoff MS, et al Clinician's guide to prevention and treatment of osteoporosis. Osteoporos Int 2014; 25:2359-2381. https://doi.org/10.1007/s00198-014-2794-2

Body JJ, Facon T, Coleman RE, Lipton A, Geurs F, Fan M, et al. A study of the biological receptor activator of nuclear factor-kappaB ligand inhibitor, denosumab, in patients with multiple myeloma or bone metastases from breast cancer. Clin Cancer Res 2006;12:1221-8. https://doi.org/10.1158/1078-0432.CCR-05-1933

Hock JM. Anabolic actions of PTH in the skeletons of animals. J Musculoskel Neuron Interact 2001; 2:33-47

Song J, Jin Z, Chang F, Li L, Su Y. Single and combined use of human parathyroid hormone (PTH) (1-34) on areal bone mineral density (aBMD) in postmenopausal women with osteoporosis: evidence based on 9 RCTs. Med Sci Monit. 2014; 20: 2624-2632. https://doi.org/10.12659/MSM.892581

Rogers MJ. New insights into the molecular mechanisms of action of bisphosphonates. Curr Pharm Des 2003;9:2643-2658. https://doi.org/10.2174/1381612033453640

Gertz BJ, Holland SD, Kline WF, et at. Clinical pharmacology of alendronate sodium. Osteoporos Int 1993;3(Suppl 3):S13-16. https://doi.org/10.1007/BF01623002

Kimmel DB. Mechanism of action, pharmacokinetic and pharmacodynamic profile, and clinical applications of nitrogen-containing bisphosphonates. J Dent Res 2007;86:1022-33. https://doi.org/10.1177/154405910708601102

Khan SA, Kanis JA, Vasikaran S, et al. Elimination and biochemical responses to intravenous alendronate in postmenopausal osteoporosis. J Bone Miner Res 1997;12:1700-1707. https://doi.org/10.1359/jbmr.1997.12.10.1700

Deeks ED Denosumab: A Review in Postmenopausal Osteoporosis. Drugs Aging. 2018 Feb;35(2):163-173. https://doi.org/10.1007/s40266-018-0525-7

Frith JC, Monkkonen J, Blackburn GM, et al. Clodronate and liposome-encapsulated clodronate are metabolized to a toxic ATP analog, adenosine 5'-(beta, gamma-dichloromethylene) triphosphate, by mammalian cells in vitro. J Bone Miner Res 1997;12:1358-67. https://doi.org/10.1359/jbmr.1997.12.9.1358

Reid IR, Brown JP, Burckhardt P, et al. Intravenous zoledronic acid in postmenopausal women with low bone mineral density. N Engl J Med 2002;346(9):653-661. [PubMed: 11870242] https://doi.org/10.1056/NEJMoa011807

Black DM, Delmas PD, Eastell R, et al. HORIZON Pivotal Fracture Trial. Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med 2007;356(18):1809-1822. https://doi.org/10.1056/NEJMoa067312

Black DM, Cummings SR, Karpf DB, et al. Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Fracture Intervention Trial Research Group. Lancet 1996, 348:1535-1541 https://doi.org/10.1016/S0140-6736(96)07088-2

Cummings SR, Black DM, Thompson DE, et al. Effect of alendronate on risk of fracture in women with low bone density but without vertebral fractures: results from the Fracture Intervention Trial. JAMA 1998, 280:2077-2082. https://doi.org/10.1001/jama.280.24.2077

Axelsson KF, WallanderM, Johansson H, et al. Hip fracture risk and safety with alendronate treatment in the oldest-old. J Intern Med 2017; 282:546-559. https://doi.org/10.1111/joim.12678

Henry DH, Costa L, Goldwasser F, et al. Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer(excluding breast and prostate cancer) or multiple myeloma. J Clin Oncol 2011;29:1125-32, https://doi.org/10.1200/JCO.2010.31.3304

Beaudoin C, Jean S, Bessette L, Ste-Marie LG, et al. Denosumab compared to other treatments to prevent or treat osteoporosis in individuals at risk of fracture: a systematic review and meta-analysis. Osteoporos Int. 2016 Sep;27(9):2835-2844. https://doi.org/10.1007/s00198-016-3607-6

Reddy MS, Weatherford TW, Smith CA, et al. Alendronate treatment of naturally-occurring periodontitis in beagle dogs. J Periodontol 1995;66:211-217. https://doi.org/10.1902/jop.1995.66.3.211

Menezes AM, Rocha FA, Chaves HV, et al. Effect of sodium alendronate on alveolar bone resorption in experimental periodontitis in rats. J Periodontol 2005;76:1901-1909. https://doi.org/10.1902/jop.2005.76.11.1901

Jeffcoat MK, Cizza G, Shih WJ, et al. Efficacy of bisphosphonates for the control of alveolar bone loss in periodontitis. J Int Acad Periodontol 2007;9:70-76.

Rocha ML, Malacara JM, Sanchez-Marin FJ, et al. Effect of alendronate on periodontal disease in postmenopausal women: a randomized placebo-controlled trial. J Periodontol 2004;75:1579-1585. https://doi.org/10.1902/jop.2004.75.12.1579

Yildiz A, Esen E, Kurkcu M, et al. Effect of zoledronic acid on osseointegration of titanium implants: an experimental study in an ovariectomized rabbit model. J Oral Maxillofac Surg 2010;68:515-523. https://doi.org/10.1016/j.joms.2009.07.066

Chacon GE, Stine EA, Larsen PE, et al. Effect of alendronate on endosseous implant integration: an in vivo study in rabbits. J Oral Maxillofac Surg 2006;64:1005-1009. https://doi.org/10.1016/j.joms.2006.01.007

Yip J, Borrell L, Cho S, et al. Association between oral bisphosphonate use and dental implant failure among middle-aged women. J Clin Periodontol 2012;39:408-414. https://doi.org/10.1111/j.1600-051X.2012.01854.x

Grant BT, Amenedo C, Freeman K, Kraut RA. Outcomes of placing dental implants in patients taking oral bisphosphonates: a review of 115 cases. J Oral Maxillofac Surg 2008;66:223-230. https://doi.org/10.1016/j.joms.2007.09.019

Khosla S, Burr D, Cauley J, et al. Bisphosphonate-associated osteonecrosis of the jaw: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res 2007;22:1479-1491. https://doi.org/10.1359/jbmr.0707onj

Yamashita J, McCauley LK, Antiresorptives and Osteonecrosis of the Jaw. J Evid Base Dent Pract 2012;S1:233-247. https://doi.org/10.1016/S1532-3382(12)70046-5

Marx RE. Pamidronate (Aredia) and zoledronate (Zometa) induced avascular necrosis of the jaws: a growing epidemic. J Oral Maxillofac Surg 2003;61:1115-1117. https://doi.org/10.1016/S0278-2391(03)00720-1

Gliklich R., Wilson J. Epidemiology of bisphosphonate-related osteonecrosis of the jaws: the utility of a national registry. J Oral Maxillofac Surg 2009;67:71-74. https://doi.org/10.1016/j.joms.2009.01.005

Ruggiero SL, Fantasia J, Carlson E. Bisphosphonate-related osteonecrosis of the jaw: background and guidelines for diagnosis, staging and management. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006; 102:433-41. https://doi.org/10.1016/j.tripleo.2006.06.004

Brooks JK, Gilson AJ, Sindler AJ, et al. Osteonecrosis of the jaws associated with use of risedronate: report of 2 new cases. Oral Surg Oral Med Oral Path Oral Radiol Endod. 2007; 103:780-786. https://doi.org/10.1016/j.tripleo.2006.10.010

Malden NJ, Pai AY. Oral bisphosphonate associated osteonecrosis of the jaws: three case reports. Br Dent J. 2007; 203:93-97. https://doi.org/10.1038/bdj.2007.636

Bisphosphonate-associated osteonecrosis of the jaws. Report of a case and literature review.Leite AF, Figueiredo PT, Melo NS, et al.Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006 Jul;102(1):14-21. https://doi.org/10.1016/j.tripleo.2005.10.045

Levin L, Laviv A, Schwartz-Arad D Denture-related osteonecrosis of the maxilla associated with oral bisphosphonate treatment. .J Am Dent Assoc. 2007 Sep;138(9):1218-20. https://doi.org/10.14219/jada.archive.2007.0346

Mavrokokki T, Cheng A, Stein B, Goss A. Nature and frequency of bisphosphonate-associated osteonecrosis of the jaws in Australia. J Oral Maxillofac Surg. 2007;65:415-423. https://doi.org/10.1016/j.joms.2006.10.061

Jadu F, Lee L, Pharoah M, Reece D, Wang L. A retrospective study assessing the incidence, risk factors and comorbidities of pamidronaterelated necrosis of the jaws in multiple myeloma patients. Ann Oncol 2007;18:2015-2019. https://doi.org/10.1093/annonc/mdm370

Wilkinson GS, Kuo YF, Freeman JL, Goodwin JS. Intravenous bisphosphonate therapy and inflammatory conditions or surgery of the jaw: a population-based analysis. J Natl Cancer Inst. 2007; 99:1016-24. [PubMed: 17596574] https://doi.org/10.1093/jnci/djm025

Vaszilkó M, Barabás J, Szabó G, et al. [Osteonecrosis of the jaws by using bisphosphonates]. Fogorv Sz. 2007 Jun;100(3):115-911.

Udvardy E, Redl P, Márton I. [Osteonecrosis of the jaw developing during bisphosphonate treatment]. Magy Onkol. 2008;52(1):81-87. https://doi.org/10.1556/MOnkol.52.2008.1.12

Vaszilko M, Kovacs E, Restar L, et al. Potential significance of antiestrogen therapy in the development of bisphosphonate related osteonecrosis of the jaw. Craniomaxillofac Surg. 2014; 42(8):1932-1936. https://doi.org/10.1016/j.jcms.2014.08.002

Koppány F, Joób-Fancsaly Á, Németh Z, et al. [Risk assessment of bisphosphonate-related osteonecrosis of the jaw based on CBCT scans]. Orv Hetil. 2020 May;161(21):867-872. https://doi.org/10.1556/650.2020.31732

Veszelyné Kotán E, Bartha-Lieb T, Parisek Z, et. al. Database analysis of the risk factors of bisphosphonate-related osteonecrosis of the jaw in Hungarian patients. BMJ Open.2019 22;9(5):e 025600. https://doi.org/10.1136/bmjopen-2018-025600

Saad F, Brown JE, Van Poznak C, et al. Incidence, risk factors, and outcomes of osteonecrosis of the jaw: integrated analysis from three blinded active-controlled phase III trials in cancer patients with bone metastases. Ann Oncol 2012,23:1341-1347. https://doi.org/10.1093/annonc/mdr435

Szentpéteri S, Restár L, Németh Z, Vaszilkó M. [Prognostic factors of the medication-related osteonecrosis of the jaw]. Orv Hetil. 2020 Feb;161(8):283-289. https://doi.org/10.1556/650.2019.31621

Fung P, Bedogni G, Bedogni A, et al. Time to onset of bisphosphonate-related osteonecrosis of the jaws: a multicentre retrospective cohort study. Oral Dis. 2017 May;23(4):477-483. https://doi.org/10.1111/odi.12632

Balla B, Vaszilko M, Kósa JP, et al. New approach to analyze genetic and clinical data in bisphosphonate-induced osteonecrosis of the jaw. Oral Dis. 2012;18(6):580-5 https://doi.org/10.1111/j.1601-0825.2012.01912.x

Yang G, Hamadeh IS, Katz J, et al. SIRT1/HERC4 Locus Associated With Bisphosphonate-Induced Osteonecrosis of the Jaw: An Exome-Wide Association Analysis. J Bone Miner Res 2018;33(1):91-98. https://doi.org/10.1002/jbmr.3285

Fizazi K, Carducci M, Smith M, et al. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet 2011;377:813-822. https://doi.org/10.1016/S0140-6736(10)62344-6

Limones A, Sáez-Alcaide LM, Díaz-Parreño SA, et al Medication-related Osteonecrosis of the Jaws (MRONJ) in Cancer Patients Treated With Denosumab VS. Zoledronic Acid: A Systematic Review and Meta-Analysis . 2020 May 1;25(3):e326-e336. https://doi.org/10.4317/medoral.23324

Huja SS, Beck FM. Bone remodeling in maxilla, mandible, and femur of young dogs. Anat Rec (Hoboken) 2008;291:1-5. https://doi.org/10.1002/ar.20780

Allen MR, Kubek DJ, Burr DB. Cancer treatment dosing regimens of zoledronic acid result in near-complete suppression of mandible intracortical bone remodeling in beagle dogs. J Bone Miner Res 2010;25:98-105. https://doi.org/10.1359/jbmr.090713

Kuroshima S, Go VA, Yamashita J. Increased numbers of nonattached osteoclasts after long-term zoledronic acid therapy in mice. Endocrinology 2012;153:17-28. https://doi.org/10.1210/en.2011-1439

Wood J, Bonjean K, Ruetz S, et al. Novel antiangiogenic effects of the bisphosphonate compound zoledronic acid. J Pharmacol Exp Ther 2002;302:1055-1061. https://doi.org/10.1124/jpet.102.035295

Masuda T, Deng X, Tamai R. Mouse macrophages primed with alendronate down-regulate monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1alpha (MIP-1alpha) production in response to Toll-like receptor (TLR) 2 and TLR4 agonist via Smad3 activation. Int Immunopharmacol 2009;9:1115-1121. https://doi.org/10.1016/j.intimp.2009.05.010

Aghaloo TL, Kang B, Sung EC, et al. . Periodontal disease and bisphosphonates induce osteonecrosis of the jaws in the rat. J Bone Miner Res 2011;26:1871-1882. https://doi.org/10.1002/jbmr.379

Mawardi H, Giro G, Kajiya M, et al. A role of oral bacteria in bisphosphonate-induced osteonecrosis of the jaw. J Dent Res 2011;90:1339-1345.

https://doi.org/10.1177/0022034511420430

Khan AA, Morrison A, Kendler DL, et al. Case-Based Review of Osteonecrosis of the Jaw (ONJ) and Application of the International Recommendations for Management From the International Task Force on ONJ. J Clin Densitom. 2017 Jan - Mar;20(1):8-24.https://doi.org/10.1016/j.jocd.2016.09.005

Bata Z, Vasziné Szabó E, Tóth Z [Considerations of elderly patient's dental rehabilitation treated with bisphophonate]. Orv Hetil. 2018 Dec;159(48):2031-2036. https://doi.org/10.1556/650.2018.31200

Janovszky Á, Vereb T, Szabó A, Piffkó J. [Current approaches for early detection and treatment of medication-related osteonecrosis of jaw]. Orv Hetil. 2014 Dec 7;155(49):1960-1966. https://doi.org/10.1556/OH.2014.30046

Kaposvári I, Körmöczi K, Csurgay K, Horváth F, Ashourioun AH, Buglyó A, Turai AR, Joób-Fancsaly Á. Delayed-onset infections after lower third molar surgery: a Hungarian case-control study. Oral Surg Oral Med Oral Pathol Oral Radiol. 2021;132:641-647. https://doi.org/10.1016/j.oooo.2021.04.052

Kaposvári I, Körmöczi K, László ZB, Oberna F, Horváth F, Joób-Fancsaly Á. A preoperatív antibiotikus és antiszeptikus kezelés hatása a műtéti úton eltávolított alsó bölcsességfogak sebgyógyulására - prospektív randomizált vizsgálat [Prospective randomized study regarding the effect of the preoperative antibiotic and chlorhexidine rinse on wound healing after mandibular third molar surgery]. Orv Hetil. 2017 Jan;158(1):13-19. Hungarian.

https://doi.org/10.1556/650.2017.30645

Szalma J, Joób-Fancsaly, Á. A vérzékeny betegek fogorvosi ellátása Fogorv. Szle 2015;108 : 57-60. https://doi.org/10.33891/FSZ.108.2.57-60

Ayers C, Kansagara D, Lazur B, et am Effectiveness and Safety of Treatments to Prevent Fractures in People With Low Bone Mass or Primary Osteoporosis: A Living Systematic Review and Network Meta-analysis for the American College of Physicians. Ann Intern Med. 2023 Feb;176:182-195. https://doi.org/10.7326/M22-0684

Quattrocchi E, Kourlas H. Teriparatide: a review. Clin Ther. 2004; 26 :841-54. https://doi.org/10.1016/S0149-2918(04)90128-2

Han SL, Wan SL. Effect of teriparatide on bone mineral density and fracture in postmenopausal osteoporosis: meta-analysis of randomised controlled trials. Int J Clin Pract 2012; 66: 199-209. https://doi.org/10.1111/j.1742-1241.2011.02837.x

Díez-Pérez A , Marin F Erik F Eriksen EE , et al. Effects of teriparatide on hip and upper limb fractures in patients with osteoporosis: a systematic review and meta-analysis Bone . 2019; 120: 1-8. https://doi.org/10.1016/j.bone.2018.09.020

Greenspan SL, Bone HG, Ettinger MP, et al. Effect of recombinant human parathyroid hormone (1-84) on vertebral fracture and bone mineral density in postmenopausal women with osteoporosis: a randomized trial. Ann Intern Med 2007; 146 :326-39. https://doi.org/10.7326/0003-4819-146-5-200703060-00005

Nakajima A, Shimoji N, Shiomi K, et. al. Mechanisms for the enhancement of fracture healing in rats treated with intermittent low-dose human parathyroid hormone (1-34). J Bone Miner Res. 2002; 17: 2038-2047. https://doi.org/10.1359/jbmr.2002.17.11.2038

Campbell EJ, Campbell GM, Hanley DA. The effect of parathyroid hormone and teriparatide on fracture healing. Expert Opin Biol Ther. 2015; 15:119-129. https://doi.org/10.1517/14712598.2015.977249

Collinge C, Juan Favela J. Use of Teriparatide in Osteoporotic Fracture Patients Injury. 2016; 47 Suppl 1: S36-38. https://doi.org/10.1016/S0020-1383(16)30009-2

Lou S, Lv H, Wang G, Zhang L, ET AL. The Effect of Teriparatide on Fracture Healing of Osteoporotic Patients: A Meta-Analysis of Randomized Controlled Trials. Biomed Res Int. 2016; 2016: 6040379. https://doi.org/10.1155/2016/6040379

Shi Z, Zhou H, Pan B, et.al. Effectiveness of Teriparatide on Fracture Healing: A Systematic Review and Meta-Analysis. PLoS One. 2016 Dec 20;11(12): e0168691 https://doi.org/10.1371/journal.pone.0168691

Spanou A, Lyritis GP, Chronopoulos E, Tournis S. Management of bisphosphonate-related osteonecrosis of the jaw: a literature review. Oral Dis. 2015;21: 927-936. https://doi.org/10.1111/odi.12333

Sibai T, Elise F. Morgan EF, et al. Anabolic Agents and Bone Quality . Clin Orthop Relat Res (2011) 469:2215-2224 https://doi.org/10.1007/s11999-010-1722-9

Gera I. Szűcs N. Humán recombináns parathormon (teriparatide) mint alternatív megoldás a gyógyszer okozta állcsontnekrózis terápiájában Orv. Hetilap 2023;164,36:1405-1415 https://doi.org/10.1556/650.2023.32861

Morishita K, Yamada SI, Kawakita A, et al. Treatment outcomes of adjunctive teriparatide therapy for medication-related osteonecrosis of the jaw (MRONJ): A multicenter retrospective analysis in Japan. J Orthop Sci. 2020; 25: 1079-1083. https://doi.org/10.1016/j.jos.2020.01.012

On SW, Cho SW, Byun SH, et al. Various Therapeutic Methods for the Treatment of Medication-Related Osteonecrosis of the Jaw (MRONJ) and Their Limitations: A Narrative Review on New Molecular and Cellular Therapeutic Approaches. Antioxidants (Basel). 2021 ; 10(5): 680. https://doi.org/10.3390/antiox10050680

Anabtawi M, Tweedale H, Mahmood H. The role, efficacy and outcome measures for teriparatide use in the management of medication-related osteonecrosis of the jaw. Int J Oral Maxillofac Surg. 2021; 50: 501-510. https://doi.org/10.1016/j.ijom.2020.07.021

Published
2024-03-14
How to Cite
GeraI., & SzücsN. (2024). The biological mechanisms of the antiresorptive therapy of osteoporosis, and the antiresorptive drug related osteonecrosis of jaws. Hungarian Journal of Dentistry, 117(1), 11-21. https://doi.org/10.33891/FSZ.117.1.11-21
Section
Review