Methodological foundation for the demographic research of dog’s tooth violet (Erythronium dens-canis L.)

  • Bálint Pacsai Department of Conservation Biology, Institute for Wildlife Management and Nature Conservation, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, H-8360 Keszthely, Festetics u. 7
  • Bence Fülöp Department of Conservation Biology, Institute for Wildlife Management and Nature Conservation, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, H-8360 Keszthely, Festetics u. 7
  • Judit Bódis Department of Conservation Biology, Institute for Wildlife Management and Nature Conservation, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, H-8360 Keszthely, Festetics u. 7
Keywords: ecology, Liliaceae, methodology, phenology, population dynamics, reproductive success

Abstract

Little is known about the life history, demography, and population dynamics of Erythronium dens-canis L., although it is listed as an endangered species in a large part of its distribution range. The aim of our research was to establish methods to study the population biology of E. dens-canis. We wanted to clarify the question of how to classify individuals into age-state categories for a perennial species whose shoots do not appear simultaneously at the beginning of its growing season. Our studies were carried out in three sites in Zala county (Hungary). A total of 377 individuals of E. dens-canis were measured at least once in 2020, of which 255 plants (67.6%) were measured twice, in March and April.
Significant differences were observed in the demographic structure of the three Erythronium populations, both in terms of location and time. In the three sample sites, nearly 99% of the reproductive individuals were already present aboveground at the time of the first survey, whereas a significant number of juveniles emerged only afterwards. Our results suggest a significant seasonal effect on the reproductive rate of E. dens-canis. While in 2020 no seedlings were found in the quadrats of the sample plots, juvenile plants were present in significant numbers in all three sites.
The classification into age-states is unambiguous for reproductive individuals but shows moderate uncertainty for juvenile and vegetative adult plants depending on the time of the survey. To increase the accuracy of the classification, leaf size estimates were made by analysing the species-specific leaf shapes. Characteristics of each population were also considered by determining the size of the smallest flowering individuals in each group and the boundaries between adult and juvenile categories were set using these values. In all three sample sites, more than three quarters of the juvenile and adult vegetative plants were categorised into the same age-state category during both surveys. Since the boundary line between these two categories is based on the size of reproductive individuals, which are the first to sprout in the populations, it can be assumed that the accuracy of the classification increases over time, as plants that sprout later may reach or approach their maximum leaf area in the meantime. An additional advantage of choosing a later time for surveying is that in April the success of reproductive individuals in fruit-set can be determined at the same time. However, late surveys could be hampered by the withering, disappearance, or damage of the plants, which becomes more frequent as the plants approach the end of their growing season.

References

'100/2012. (IX. 28.) VM rendelet „A védett és a fokozottan védett növény- és állatfajokról, a fokozottan védett barlangok köréről, valamint az Európai Közösségben természetvédelmi szempontból jelentős növény- és állatfajok közzétételéről szóló 13/2001. (V. 9.) KöM rendelet és a növényvédelmi tevékenységről szóló 43/2010. (IV. 23.) FVM rendelet módosításáról”. Magyar Közlöny 128: 20903–21020.

Bérces S., Pintér B., Bezeczky G., Csáky P., Baranyai Zs. 2021: Tátorján vizsgálata a DunaIpoly Nemzeti Park Igazgatóság területén. XIII. Aktuális flóra- és vegetációkutatás a Kárpátmedencében nemzetközi konferencia. Program és összefoglalók, p. 80.

Biró É., Bódis J. 2018: Adatok a hazai adriai sallangvirág állományok természetvédelmi kezeléséhez. Természetvédelmi Közlemények 24: 25–33. https://doi.org/10.20332/tvk-jnatconserv.2018.24.25

Bradshaw M. E., Doody J.P. 1978: Plant population studies and their relevance to nature conservation. Biological Conservation 14(3): 223–242. https://doi.org/10.1016/0006-3207(78)90012-5

Dafni A., Cohen D., Noy-Mier I. 1981: Life-cycle variation in geophytes. Annals of the Missouri Botanical Garden 68(4): 652–660. https://doi.org/10.2307/2398893

Guitián J., Guitián P., Medrano M., Sanchez J. M. 1999: Variation in floral morphology and individual fecundity in Erythronium dens-canis (Liliaceae). Ecography 22: 708–714. https://doi.org/10.1111/j.1600-0587.1999.tb00520.x

Guitián P., Medrano M., Guitián J. 2003: Seed dispersal in Erythronium dens-canis L. (Liliaceae): variation among habitats in a myrmecochorous plant. Plant Ecology 169: 171–177. https://doi.org/10.1023/A:1026043411357

Guo Q., Wen Z., Zheng C., Li W., Fan Y., Zhu D. 2021: Effects of Robinia pseudoacacia on the undergrowth of herbaceous plants and soil properties in the Loess Plateau of China. Journal of Plant Ecology 14(5): 896–910. https://doi.org/10.1093/jpe/rtab041

Hanzawa F. M., Kalisz S. 1993: The relationship between age, size, and reproduction in Trillium grandiflorum (Liliaceae). American Journal of Botany 80(4): 405–410. https://doi.org/10.2307/2445387

Holland P. G. 1980: Trout lily in Nova Scotia: an assessment of the status of its geographic range. Journal of Biogeography 7(4): 363–381. https://doi.org/10.2307/2844656

Holland P. G. 1981: The demography of trout lily (Erythronium americanum Ker.) in Nova Scotia. Vegetatio 45: 97–106. https://doi.org/10.1007/BF00119219

Jendrasits L., Fischl G. 2008: Védett növényfajok rozsdagombái az Őrségben. Növényvédelem 44(7): 360–364.

Kawano S., Hiratsuka A., Hayashi K. 1982: Life history characteristics and survivorship of Erythronium japonicum. The productive and reproductive biology of flowering plants V. Oikos 38(2): 129–149. https://doi.org/10.2307/3544013

Király G. (szerk.) 2009: Új magyar füvészkönyv. Magyarország hajtásos növényei. Határozókulcsok. ANP Igazgatóság, Jósvafő, 616 pp.

La Rocca N., Pupillo P., Puppi G., Rascio N. 2014: Erythronium dens-canis L.: an unusual case of leaf mottling. Plant Physiology and Biochemistry 74: 108–117. https://doi.org/10.1016/j.plaphy.2013.11.005

Lendvay B., Kalapos T. 2009: A magyarföldi husáng (Ferula sadleriana) populációinak állapotfelmérése 2008-ban. Természetvédelmi Közlemények 15: 486–492.

Ma R., Xu S., Chen Y., Guo F., Wu R. 2020: Allometric relationships between leaf and bulb traits of Fritillaria przewalskii Maxim. grown at different altitudes. PLoS ONE 15(10): e0239427. https://doi.org/10.1371/journal.pone.0239427

Miller M. T., Antos J. A., Allen G. A. 2007: Demographic differences between two sympatric lilies (Calochortus) with contrasting distributions, as revealed by matrix analysis. Plant Ecology 191: 265–278. https://doi.org/10.1007/s11258-006-9241-1

Mondoni A., Rossi G., Probert R. 2012: Temperature controls seed germination and dormancy in the European woodland herbaceous perennial Erythronium dens-canis (Liliaceae). Plant Biology 14: 475–480. https://doi.org/10.1111/j.1438-8677.2011.00517.x.

Nagy T., Pfliegler W. P., Takács A., Tökölyi J., Molnár V. A. 2019: Distribution, infection rates and DNA-barcoding of Uromyces erythronii (Pucciniaceae), a parasite of Erythronium (Liliaceae) in Europe. Willdenowia 49(1): 13–20. https://doi.org/10.3372/wi.49.49103

Pupillo P., Astuti G. 2017: Population structure of Erythronium dens-canis L. (Liliaceae) in the northern Apennines (Italy). Italian Botanist 4: 1–14. https://doi.org/10.3897/italianbotanist.4.12439

Sawada S., Harada A., Asari Y., Asano S., Kuninaka M., Kawamura H., Kasai M. 1999: Effects of micro-environmental factors on photosynthetic CO2 uptake and carbon fixation metabolism in a spring ephemeral, Erythronium japonicum, growing in native and open habitats. Ecological Research 14: 119–130. http://doi.org/10.1046/j.1440-1703.1999.00288.x

Schnittler M., Pfeiffer T., Harter D., Hamann A. 2009: Bulbils contra seeds: reproductive investment in two species of Gagea (Liliaceae). Plant Systematics and Evolution 279(1): 29–40. http://doi.org/10.1007/s00606-008-0143-7

Soó R. 1973: A magyar flóra és vegetáció rendszertani-növényföldrajzi kézikönyve V. Akadémiai Kiadó, Budapest, 723 pp.

Tamm C. O. 1956: Further observations on the survival and flowering of some perennial herbs. I. Oikos 7: 273–292. https://doi.org/10.2307/3564927

Vacek S., Linda R., Králíček I., Vančura K., Prokůpková A., Prausová R. 2020: Effect of structure and dynamics of forests on the occurrence of Erythronium dens-canis. Journal of Forest Science 66(9): 349–360. https://doi.org/10.17221/96/2020-JFS

Virók V., Farkas R., Farkas T., Šuvada R., Vojtkó A. 2016: A Gömör–Tornai-karszt flórája, Enumeráció. Flóra Gemersko-turnianskeho krasu, Enumerácia. (Vascular flora of the Gömör-Torna Carst, Enumeration). Aggteleki Nemzeti Park Igazgatóság, Jósvafő, 200 + 910 pp.

Vojtkó A. (szerk.) 2001: A Bükk hegység flórája. Sorbus Kiadó, Eger, 340 pp.

Wein G. R., Pickett S. T. A. 1989: Dispersal, establishment, and survivorship of a cohort of Erythronium americanum. Bulletin of the Torrey Botanical Club 116(3): 240–246. https://doi.org/10.2307/2996813

Published
2022-12-02
Section
Original articles