Embryo development and seedling emergence of Sternbergia colchiciflora Waldst. et Kit. in an ex situ experiment

  • Bálint Pacsai Festetics Doctoral School, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, 8360 Keszthely, Deák Ferenc u. 16, Hungary; Department of Nature Conservation Biology, Institute for Wildlife Management and Nature Conservation, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Festetics u. 7, Hungary https://orcid.org/0009-0007-4610-6475
  • Emese Anna Bognár Department of Nature Conservation Biology, Institute for Wildlife Management and Nature Conservation, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Festetics u. 7, Hungary https://orcid.org/0009-0007-6273-3153
  • Vivien Lábadi Festetics Doctoral School, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, 8360 Keszthely, Deák Ferenc u. 16, Hungary; Department of Nature Conservation Biology, Institute for Wildlife Management and Nature Conservation, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Festetics u. 7. https://orcid.org/0009-0003-0907-9122
  • András Mészáros Balaton-felvidéki National Park Directorate, 8229 Csopak, Kossuth u. 16, Hungary
  • Judit Bódis Department of Nature Conservation Biology, Institute for Wildlife Management and Nature Conservation, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Festetics u. 7, Hungary https://orcid.org/0000-0002-3707-1684
Keywords: Amaryllidaceae, dormancy, elaiosome, scarification, soaking, vernalization

Abstract

The polycarpic herbaceous perennial Sternbergia colchiciflora Waldst. et Kit. (Amaryllidaceae) is a dry grassland plant species with endangered status throughout its range. Yet, its life history and reproductive biology are poorly understood. In an ex situ experiment conducted between 2020 and 2023, we studied the germination capacity of the species with the aim of selecting the most appropriate treatment to enhance seed emergence. Seeds were sown partly by imitating natural conditions and partly after applying different treatments. In addition, we also monitored the dynamics of embryo development in the months right after seed dispersal.

Thousand seed weight was determined twice before the experiments and was found to be 5.60 (2021) and 5.84 g (2022), in good agreement with literature data. Moderate success was observed in the sowing experiments, with emergence rates ranging from 0 to 37.5% depending on the treatment. For seeds sown after dry storage and with no experimental treatment and kept outside gave different results in different years: seeds collected in 2020 and 2021 and sown in the autumn of 2021 started to emerge only after one and a half years, while seeds sown immediately after ripening in 2022, emerged the following year. For treated seeds, scarification reduced the time needed for emergence. The shortest time until emergence was 10 weeks after sowing (for scarified seeds). Although the emergence rate of seeds sown right after harvesting at maturity and without any treatment was better than any other treatments, the emergence rate was still considerably low.

Our experiment designed to study embryo development showed no significant effect of scarification on embryo growth at this stage of development. Embryo growth was slow but nearly steady (the originally 1.21 mm average embryo length grew to 2.08 mm by the end of the experiment – which was 48.8 and 72.8% of the length of seeds, respectively) during the study period (June – end of October), but none of the seeds did reach the germination stage. Based on the embryo growth test and the emergence rates of seeds subjected to the different treatments, Sternbergia colchiciflora most likely has seeds with morphophysiological
type of dormancy. Using more suitable methods for germination and examining the survival rate of seedlings are the focal points of the continuation of this experiment.

References

Antonidaki-Giatromanol aki A., Orchard J. E., Dragassaki M., Vlahos J. C. 2008: Propagation of Sternbergia sicula, by seed and tissue culture. Acta Horticulturae 766: 149–154. https://doi.org/10.17660/actahortic.2008.766.18

Bartha D., Király G., Schmidt D., Tiborcz V., Barina Z., Csiky J., Jakab G., Lesku B., Schmotzer A., Vidéki R., Vojtkó A., Zólyomi Sz. (szerk.) 2015: Magyarország edényes növényfajainak elterjedési atlasza. Nyugat-magyarországi Egyetem Kiadó, Sopron, 330 pp.

Baskin C. C., Baskin J. M. 2014: Seeds: ecology, biogeography, and evolution of dormancy and germination. 2nd ed. Academic Press – Elsevier, San Diego, 1600 pp.

Çiçek E., Aslan M., Tilki F. 2007: Effect of stratification on germination of Leucojum aestivum L. seeds, a valuable ornamental and medicinal plant. Research Journal of Agriculture and Biological Sciences 3(4): 242–244.

Csontos P. 2001: A természetes magbank kutatásának módszerei. Scientia Kiadó, Budapest, 155 pp.

Csontos P., Simkó H. 2008: A magyar repcsény (Erysimum odoratum Ehrh.) csírázásbiológiájának vizsgálata. Tájökológiai Lapok 6(3): 247–253.

Kereszty Z., Galántai M. 1994: Hazai védett növényfajok ex-situ konzervációja. Botanikai Közlemények 81(2): 141–155.

Kovács Zs., Barabás S., Höhn M. 2018: Az óriás útifű (Plantago maxima Juss. ex Jacq.) csírázásbiológiai vizsgálata. Botanikai Közlemények 105(2): 243–252. https://doi.org/10.17716/BotKozlem.2018.105.2.243

Lengyel Sz., Gove A. D., Latimer A. M., Majer J. D., Dunn R. R. 2010: Convergent evolution of seed dispersal by ants, and phylogeny and biogeography in flowering plants: a global survey. Perspectives in Plant Ecology, Evolution and Systematics 12(1): 43–55. https://doi.org/10.1016/j.ppees.2009.08.001

Mikatadze-Pantsulaia T., Barblishvili T., Japaridze E., Kikvidze M. 2016: Self-renewal capacity of several species of the genus Sternbergia possessing medicinal properties. Journal of Agricultural Science and Technology 6: 183–190. https://doi.org/10.17265/2161-6256/2016.03.005

Molnár V. A., Mészáros A., Csathó A. I., Balogh G., Csősz S. 2018: Ant species dispersing the seeds of the myrmecochorous Sternbergia colchiciflora (Amaryllidaceae). North-Western Journal of Zoology 14(2): 265–267.

Molnár V. A., Siffer S., Molnár H. A., Fekete R. 2020: Occurrence of the rare plant Sternbergia colchiciflora in an urban environment. Biologia Futura 71(1–2): 93–98. https://doi.org/10.1007/s42977-020-00018-4

Newton R. J., Hay F. R., Ellis R. H. 2013: Seed development and maturation in early spring flowering Galanthus nivalis and Narcissus pseudonarcissus continues post-shedding with little evidence of maturation in planta. Annals of Botany 111(5): 945–955. https://doi.org/10.1093/aob/mct051

Pacsai B., Bognár E. A., Bódis J., Lábadi V., Mészáros A., Molnár V. A. 2024: Reprodukcióbiológiai vizsgálatok a vetővirág (Sternbergia colchiciflora Waldst. et Kit.) ex-situ állományában. In: Csecserits A., Somodi I. (szerk.) XIV. Aktuális Flóra- és Vegetációkutatás a Kárpát-medencében nemzetközi konferencia: Összefoglalók. HUN-REN Ökológiai Kutatóközpont, Budapest, p. 64.

Pacsai B., Fülöp B., Bódis J. 2022: A kakasmandikó (Erythronium dens-canis L.) demográfiai kutatásának módszertani megalapozása. Botanikai Közlemények 109(2): 201–217. https://doi.org/10.17716/BotKozlem.2022.109.2.201

Parolo G., Abeli T., Rossi G., Dowgiallo G., Matthies D. 2011: Biological flora of Central Europe: Leucojum aestivum L. Perspectives in Plant Ecology, Evolution and Systematics 13(4): 319–330. https://doi.org/10.1016/j.ppees.2011.05.004

Peruzzi L., Di Benedetto C., Aquaro G., Caparelli K. F. 2008: The genus Sternbergia Waldst. & Kit. (Amaryllidaceae) in Italy. Contribution to the cytotaxonomical and morphoanatomical knowledge. Caryologia 61(1): 107–113. https://doi.org/10.1080/00087114.2008.10589616

Peti E., Schellenberger J., Németh G., Málnási Csizmadia G., Oláh I., Török K., Czóbel Sz., Baktay B. 2017: Presentation of the HUSEEDwild – a seed weight and germination database of the Pannonian flora – through analysing life forms and social behaviour types. Applied Ecology and Environmental Research 15(1): 225–244. https://doi.org/10.15666/aeer/1501_225244

Pénzes A. 1934: Termés-ökológiai megfigyelések. Botanikai Közlemények 31(1–2): 28–35.

Sonkoly J., Deák B., Valkó O., Molnár V. A., Tóthmérész B., Török P. 2017: Do large-seeded herbs have a small range size? The seed mass–distribution range trade-off hypothesis. Ecology and Evolution 7(24): 11204–11212. https://doi.org/10.1002/ece3.3568

Thomson F. J., Moles A. T., Auld T. D., Kingsford R. T. 2011: Seed dispersal distance is more strongly correlated with plant height than with seed mass. Journal of Ecology 99(6): 1299–1307. https://doi.org/10.1111/j.1365-2745.2011.01867.x

Török P., Miglécz T., Valkó O., Tóth K., Kelemen A., Albert Á.-J., Matus G., Molnár V. A., Ruprecht E., Papp L., Deák B., Horváth O., Takács A., Hüse B., Tóthmérész B. 2013: New thousand-seed weight records of the Pannonian flora and their application in analysing social behaviour types. Acta Botanica Hungarica 55(3–4): 429–472. https://doi.org/10.1556/abot.55.2013.3-4.17

Törő-Szijgyártó V., Balogh N., Henn T., McIntosh-Buday A., Sonkoly J., Takács A., Kovacsics-Vári G., Díaz Cando P., Molnár V. A., Matus G., Teleki B., Süveges K., Lukács B. A., Lovas-Kiss Á., Tóthmérész B., Tóth E., Tóth K., Török P. 2023: New thousand-seed weight dataset for plant species of Central Europe. Data in Brief 48: 109081. https://doi.org/10.1016/j.dib.2023.109081

Vuković N., Šegota V., Brana S. 2017: Data deficient Sternbergia colchiciflora Waldst. & Kit. (Amaryllidaceae) in Croatian flora – removing the veil of mist. Natura Croatica 26(2): 261–269. https://doi.org/10.20302/NC.2017.26.20

Világháló hivatkozás

http1 – Society for Ecological Restoration, International Network for Seed Based Restoration and Royal Botanic Gardens Kew. Seed Information Database (SID). https://ser-sid.org/ (hozzáférés: 2023.10.12.)

Published
2024-11-27
How to Cite
Pacsai B., Bognár E. A., LábadiV., Mészáros A., & Bódis J. (2024). Embryo development and seedling emergence of Sternbergia colchiciflora Waldst. et Kit. in an ex situ experiment. Botanikai Közlemények, 111(2), 147-160. https://doi.org/10.17716/BotKozlem.2024.111.2.147
Section
Original articles