Genetic background of drought tolerance in barley

  • Ildikó Schmidthoffer Biology Department, Faculty of Dániel Berzsenyi Teacher Training Center, Eötvös Loránd University, H–9700 Szombathely, Károlyi Gáspár tér 4, Hungary https://orcid.org/0009-0007-7789-0100
  • Péter Csontos Institute for Soil, Science and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, H–1022 Budapest, Herman O. út 15,Hungary
  • Anna Skribanek Biology Department, Faculty of Dániel Berzsenyi Teacher Training Center, Eötvös Loránd University, H–9700 Szombathely, Károlyi Gáspár tér 4, Hungary https://orcid.org/0000-0002-2468-991X
Keywords: drought stress, genes, Hordeum vulgare, review, stress tolerance

Abstract

Increasing the drought tolerance of cultivated crops is becoming a priority from a practical point of view. The identification and deeper understanding of genes involved in drought tolerance receives a great emphasis. In this work, we summarize the genes (Hsdr4, Dhn1, Dhn3, Dhn5, Dhn9, P5CS, HSP17, HSP18, HSP70, HSP90 and HVA1) that have been associated with drought tolerance for barley (Hordeum vulgare L.) and investigated in detail. The expression of these genes may indicate the degree of drought tolerance.

References

Abu-Romman S. M., Ammari T. G., Irshaid L. A., Salameh N. M., Hasan M. K., Hasan H. S.201 1: Cloning and expression patterns of the HvP5CS gene from barley (Hordeum vulgare). Journal of Food, Agriculture & Environment 9(3–4): 279–284. https://doi.org/10.1234/4.2011.2269

Ahmed I. M., Dai H., Zheng W., Cao F., Zhang G., Sun D., Wu F. 2013: Genotypic differences in physiological characteristics in the tolerance to drought and salinity combined stress between Tibetan wild and cultivated barley. Plant Physiology and Biochemistry 63: 49–60. https://doi.org/10.1016/j.plaphy.2012.11.004

Ahmed I. M., Nadira U. A., Cao F., He X., Zhang G., Wu F. 2016: Physiological and molecular analysis on root growth associated with the tolerance to aluminum and drought individual and combined in Tibetan wild and cultivated barley. Planta 243: 973. https://doi.org/10.1007/s00425-015-2442-x

Akash M. W., Al-abdallat A. M., Saoub H. M., Ayad J. Y. 2009: Molecular and field comparison of selected barley cultivars for drought tolerance. Journal of New Seeds 10(2): 98–111. https://doi.org/10.1080/15228860902901710

Al-Ajlouni Z. I., Al-Abdallat A. M., Al-Ghzawi A. L. A., Ayad J. Y., Elenein J. M. A., Al-Quraan N. A., Baenziger S. 2016: Impact of pre-anthesis water deficit on yield and yield components in barley (Hordeum vulgare L.) plants grown under controlled conditions. Agronomy 6: 33. https://doi.org/10.3390/agronomy6020033.

Albayrak G., Yoruk E., Diken O. 2012: Quantitative gene expression analysis of WRKY38 and DREB2 transcription factors responsible for drought and salt tolerance in barley (Hordeum vulgare L.). New Biotechnology 29: S22. https://doi.org/10.1016/j.nbt.2012.08.053

Al-Momany B., Abu-Romman S. 2014: Cloning and molecular characterization of a flavin-dependent oxidoreductase gene from barley. Journal of Applied Genetics 55(4): 457–468. https://doi.org/10.1007/s13353-014-0227-8

Bandurska H., Niedziela J., Pietrowska-Borek M., Nuc K., Chadzinikolau T., Radzikowska D. 2017: Regulation of proline biosynthesis and resistance to drought stress n two barley (Hordeum vulgare L.) genotypes of different origin. Plant Physiology and Biochemistry 118: 427–437. https://doi.org/10.1016/j.plaphy.2017.07.006

Binott J. J. 2015: Physiological and molecular characterization of Kenyan barley lines (Hordeum vulgare L.) for abiotic stress tolerance and malting attributes. PhD Dissertation, Rheinischen Friedrich-Wilhelms-Universität, Bonn. https://d-nb.info/1084760584/34

Bláha L., Středa T. 2016: Plant integrity – the important factor of adaptability to stress conditions. Abiotic and Biotic Stress in Plants – Recent Advances and Future Perspectives. https://doi.org/10.5772/62306

Chaumont F., Tyerman S. D. 2014: Aquaporins: highly regulated channels controlling plant water relations. Plant Physiology 164(4): 1600–1618. https://doi.org/10.1104/pp.113.233791

Chaves M. M., Flexas J., Pinheiro C. 2009: Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany 103(4): 551–560. https://doi.org/10.1093/aob/mcn125

Chen G., Li C., Shi Y., Nevo E. 2008: Wild barley, Hordeum spontaneum, a genetic resource for crop improvement in cold and arid regions. Sciences in Cold and Arid Regions 1: 0115-0124.

Chen G., Li H., Wei Y., Zheng Y. L., Zhou M., Liu C. 2016: Pleiotropic effects of the semidwarfing gene uzu in barley. Euphytica 209: 749–755. https://doi.org/10.1007/s10681-016-1668-4

Cieśla A., Mituła F., Misztal L., Fedorowicz-Strońska O., Janicka S., TajdelZielińska M., Marczak M., Janicki M., Ludwików A., Sadowski J. 2016: A role for barley calcium-dependent protein kinase CPK2a in the response to drought. Frontiers in Plant Science 7: 1550. https://doi.org/10.3389/fpls.2016.01550

Close T. J., Dong-Woog C., Salvi S., Tuberosa R., Ryabushkina N., Nevo E. 2000: Allelic variation at loci encoding dehydrins in wild and cultivated barley. In: Plant and Animal Genome, San Diego, VIII: 9-12.

Daszkowska-Golec A., Skubacz A., Marzec M., Slota M., Kurowska M., Gajecka M., Gajewska P., Płociniczak T., Sitko K., Pacak A., Szweykowska-Kulinska Z., Szarejko I. 2017: Mutation in HvCBP20 (Cap Binding Protein 20) adapts barley to drought stress at phenotypic and transcriptomic levels. Frontiers in Plant Science 8: 942. https://doi.org/10.3389/fpls.2017.00942

Deng G., Li ang J., Xu D., Long H., Pan Zh., Yu M. 2013: The relationship between proline content, the expression level of P5CS (Δ1-pyrroline-5-carboxylate synthetase), and drought tolerance in Tibetan hulless barley (Hordeum vulgare var. nudum). Russian Journal of Plant Physiology 60(5): 693–700. https://doi.org/10.1134/S1021443713050038

Djemal R., Mila I., Bouzayen M., Pirrello J., Khoudi H. 2018: Molecular cloning and characterization of novel WIN1/SHN1 ethylene responsive transcription factor HvSHN1 in barley (Hordeum vulgare L.). Journal of Plant Physiology 228: 39–46. https://doi.org/10.1016/j.jplph.2018.04.019

Faralli M., Lektemur C., Rosellini D., Gürel F. 2015: Effects of heat shock and salinity on barley growth and stress-related gene transcription. Biologia Plantarum 59(3): 537–546. https://doi.org/10.1007/s10535-015-0518-x.

Fedorowicz-Strońska O., Koczyk G., Kaczmarek M., Krajewski P., Sadowski J. 2017: Genome-wide identification, characterisation and expression profiles of calcium-dependent pro tein kinase genes in barley (Hordeum vulgare L.). Journal of Applied Genetics 58(1):11–22. https://doi.org/10.1007/s13353-016-0357-2

Feuillet C., Langridge P., Waugh R. 2008: Cereal breeding takes a walk on the wild side. Trends in Genetics 24(1): 24–32. https://doi.org/10.1016/j.tig.2007.11.001

Gous P. W., Gilbert R. G., Fox G. P. 2015: Drought-proofing barley (Hordeum vulgare) and its impact on grain quality: a review. Journal of The Institute of Brewing 121: 19–27. https://doi.org/10.1002/jib.187

Guo B., Wei Y., Xu R., Lin S., Luan H., Lv C. 2016: Genome-wide analysis of APETALA2/ethylene-responsive factor (AP2/ERF) gene family in barley (Hordeum vulgare L.). PLoS ONE 11(9): e0161322. https://doi.org/10.1371/journal.pone.0161322

Gürel F., Öztürk Z. N., Uçarlı C., Rosellini D. 2016: Barley genes as tools to confer abiotic stress tolerance in crops. Frontiers in Plant Science 7: 1137. https://doi.org/10.3389/fpls.2016.01137

Habte E., Müller L. M., Shtaya M., Davis S. J., Korff M. 2014: Osmotic stress at the barley root affects expression of circadian clock genes in the shoot. Plant, Cell and Environment 37: 1321–1337. https://doi.org/10.1111/pce.12242

Hanson A. D., Nelson C. E., Everson E. H. 1977: Evaluation of free proline accumulation as an index of drought resistance using two contrasting barley cultivars. Crop Science 17: 720–726. https://doi.org/10.2135/cropsci1977.0011183X001700050012x

Harb A., Awad D, Samarah N. 2015: Gene expression and activity of antioxidant enzymes in barley (Hordeum vulgare L.) under controlled severe drought. Journal of Plant Interactions 10(1): 109–116. https://doi.org/10.1080/17429145.2015.1033023

Harb A. M., Samarah N. H. 2015: Physiological and molecular responses to controlled severe drought in two barley (Hordeum vulgare L.) genotypes. Journal of Crop Improvement 29(1): 82–94. https://doi.org/10.1080/15427528.2014.976802

Hayano-Kanashiro C., Calderon-Vazquez C., Ibarra-Laclette E., Herrera-Estrella L., Simpson J. 2009: Analysis of gene expression and physiological responses in three Mexican maize landraces under drought stress and recovery irrigation. PLoS ONE 4(10): e7531. https://doi.org/10.1371/journal.pone.0007531

Janeczko A., Gruszka D., Pociecha E., Dziurka M., Filek M., Jurczyk B., Kalaji H. M., Kocurek M., Waligórski P. 2016: Physiological and biochemical characterisation of watered and drought-stressed barley mutants in the HvDWARF gene encoding C6-oxidase involved in brassinosteroid biosynthesis. Plant Physiology and Biochemistry 99: 126–141. https://doi.org/10.1016/j.plaphy.2015.12.003

Karami A., Shahbazi M., Niknam V., Shobbar Z. S., Tafreshi R. S., Abedini R., Mabood H. E. 2013: Expression analysis of dehydrin multigene family across tolerant and susceptible barley (Hordeum vulgare L.) genotypes in response to terminal drought stress. Acta Physiologiae Plantarum 35: 2289–2297. https://doi.org/10.1007/s11738-013-1266-1

Li C. D., Langridge P., Zhang X. Q., Eckstein P. E., Rossnagel B. G., Lance R. C. M. 2002: Mapping of barley (Hordeum vulgare L.) β-amylase alleles in which an amino acid substitution determines β-amylase isoenzyme type and the level of free β-amylase. Journal of Cereal Science 35: 39–50. https://doi.org/10.1006/jcrs.2001.0398.

Matsumoto T., Morishige H., Tanaka T., Kanamori H., Komatsuda T., Sato K., Itoh T., Wu J., Nakamura S. 2014: Transcriptome analysis of barley identifies heat shock and HDZip I transcription factors up-regulated in response to multiple abiotic stresses. Molecular Breeding 34: 761–768. https://doi.org/101007/s1103201400489.

Mazzucotelli E., Mastrangelo A. M., Crosatti C., Guerra D., Stanca A. M., Cattivelli L. 2008: Abiotic stress response in plants: when post-transcriptional and post-translational regulations control transcription. Plant Science 174(4): 420–431. https://doi.org/10.1016/j.plantsci.2008.02.005

Mezer de M, Turska-Taraska A., Kaczmarek Z., Glowacka K., Swarcewicz B., Rorat T. 2014: Differential physiological and molecular response of barley genotypes to water deficit. Plant Physiology and Biochemistry 80: 234–248.

https://doi.org/10.1016/j.plaphy.2014.03.025

Nagy B., Majer P., Mihály R., Pauk J., Horváth G. V. 2016: Stress tolerance of transgenic barley accumulating the alfalfa aldose reductase in the cytoplasm and the chloroplast. Phytochemistry 129: 14–23. https://doi.org/10.1016/j.phytochem.2016.07.007

Papaefthimiou D., Tsaftaris A. S. 2012a: Significant induction by drought of HvPKDM7-1, a gene encoding a jumonji-like histone demethylase homologue in barley (H. vulgare). Acta Physiologiae Plantarum 34(3): 1187–1198. https://doi.org/10.1007/s11738-011-0915-5

Papaefthimiou D., Tsaftaris A.S. 2012b: Characterization of a drought inducible trithoraxlike H3K4 methyltransferase from barley. Biologia Plantarum 56(4): 683–692. https://doi.org/10.1007/s10535-012-0125-z

Pospíšilová H., Jiskrová E., Vojta P., Mrízová K., Kokáš F., Čudejková M. M., Bergougnoux V., Plíhal O., Klimešová J., Novák O., Dzurová L., Frébort I., Galuszka P. 2016: Transgenic barley overexpressing a cytokinin dehydrogenase gene shows greater tolerance to drought stress. New Biotechnology 33(5B): 692–705. https://doi.org/10.1016/j.nbt.2015.12.005

Pourabed E., Golmohamadi F. G., Monfared P. S., Razavi S. M., Shobbar Z. S. 2015: Basic leucine zipper family in barley: genome-wide characterization of members and expression analysis. Molecular Biotechnology 57(1): 12–26. https://doi.org/10.1007/s12033-014-9797-2

Qian G., Han Z., Zhao T., Deng G., Pan Z., Yu M. 2007: Genotypic variability in sequence and expression of HVA1 gene in Tibetan hulless barley, Hordeum vulgare ssp. vulgare, associated with resistance to water deficit. Australian Journal of Agricultural Research 58(5): 425–431. https://doi.org/10.1071/AR06300

Ramireddy E., Hosseini S. A., Eggert K., Gillandt S., Gnad H., Wirén N., Schmülling T. 2018: Root engineering in barley: increasing cytokinin degradation produces a larger root system, mineral enrichment in the shoot and improved drought tolerance. Plant Physiology 177: 1078–1095. https://doi.org/10.1104/pp.18.00199

Rezaei M. K., Shobbar Z.-S., Shahbazi M., Abedini R., Zare S. 2013: Glutathione S-transferase (GST) family in barley: Identification of members, enzyme activity, and gene expression pattern. Journal of Plant Physiology 170(14): 1277–1284. https://doi.org/10.1016/j.jplph.2013.04.005

Schmidthoffer I., Szilák L., Molnár P., Csontos P., Skribanek A. 2018: Drought tolerance of European barley (Hordeum vulgare L.) varieties. Agriculture (Poľnohospodárstvo), 64(3): 137–142. https://doi.org/10.2478/agri-2018-0014

Seiler C., Harshavardhan V. T., Reddy P. S., Hensel G., Kumlehn J., Eschen-Lippold L., Rajesh K., Korzun V., Wobus U., Lee J., Selvaraj G., Sreenivasulu N. 2014: Abscisic acid flux alterations result in differential abscisic acid signaling responses and impact assimilation efficiency in barley under terminal drought stress. Plant Physiology 164: 1677–1696. https://doi.org/10.1104/pp.113.229062

Shaar-Moshe L., Hübner S., Peleg Z. 2015: Identification of conserved droughtadaptive genes using a cross-species meta-analysis approach. BMC Plant Biology. 15: 111. https://doi.org/10.1186/s12870-015-0493-6

Singh T. N., Aspinall D., Paleg L. G. 1972: Proline accumulation and varietal adaptability to drought in barley: a potential metabolic measure of drought resistance. Nature New Biology 236(67): 188–190. https://doi.org/10.1038/newbio236188a0

Skribanek A., Schmidthoffer I., Csontos P. 2016: Szárazságstressz hatása 22 árpafajta csíranövényének fotoszintetikus paramétereire. Botanikai Közlemények 103(2): 237–248. https://doi.org/10.17716/BotKozlem.2016.103.2.237

Sńiegowska-Świerk K., Dubas E., Rapacz M. 2015: Drought-induced changes in the actin cyto skeleton of barley (Hordeum vulgare L.) leaves. Acta Physiologiae Plantarum 37: 73. https://doi.org/10.1007/s11738-015-1820-0

Suprunova T., Krugman T., Distelfeld A., Fahima T., Nevo E., Korol A. 2007: Identification of a novel gene (Hsdr4) involved in water-stress tolerance in wild barley. Plant Molecular Biology 64(1–2): 17–34. https://doi.org/10.1007/s11103-006-9131-x

Suprunova T., Krugman T., Fahima T., Chen G., Shams I., Korol A., Nevo E. 2004: Differential expression of dehydrin genes in wild barley, Hordeum spontaneum, associated with resistance to water deficit. Plant, Cell and Environment 27: 1297–1308. https://doi.org/10.1111/j.1365-3040.2004.01237.x

Svoboda P., Janska A., Spiwok V., Prasil I. T., Kosova K., Vitamvas P., Ovesna J. 2016: Global scale transcriptional profiling of two contrasting barley genotypes exposed to moderate drought conditions: Contribution of leaves and crowns to water shortage coping strategies. Frontiers in Plant Science 7: 1958. https://doi.org/10.3389/fpls.2016.01958

Szigeti Z. 2018: A növényi stresszel kapcsolatos felfogásunk változásai. Botanikai Közlemények 105(2): 165–178. https://doi.org/10.17716/BotKozlem.2018.105.2.165

Temel A., Janack B., Humbeck K. 2017: Drought stress-related physiological changes and histone modifications in barley primary leaves at HSP17 gene. Agronomy 7: 43. https://doi.org/10.3390/agronomy7020043

Tester M., Langridge P. 2010: Breeding technologies to increase crop production in a changing world. Science 327(5967): 818–822. https://doi.org/10.1126/science.1183700.

Velasco-Arroyo B., Diaz‐Mendoza M., Gomez‐Sanchez A., Moreno‐Garcia B., Santamaria M. E., Torija‐Bonilla M., Hensel G., Kumlehn J., Martinez M., Diaz I. 2018: Silencing barley cystatins HvCPI‐2 and HvCPI‐4 specifically modifies leaf responses to drought stress. Plant Cell & Environment 41: 1776–1790. https://doi.org/10.1111/pce.13178

Versalus P.E., Agarwal M., Katiyar-Agarwal S., Zhu J., Zhu J.-K. 2006: Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. The Plant Journal 45: 523–539. https://doi.org/10.1111/j.1365-313x.2005.02593.x

Wehner G., Balko C., Humbeck K., Zyprian E., Ordon F. 2016: Expression profiling of genes involved in drought stress and leaf senescence in juvenile barley. BMC Plant Biology 16: 3. https://doi.org/10.1186/s12870-015-0701-4

Wójcik-Jagla M., Rapacz M., Barcik W., Janowiak F. 2012: Differential regulation of barley (Hordeum distichon) HVA1 and SRG6 transcript accumulation during the induction of soil and leaf water deficit. Acta Physiologiae Plantarum 34: 2069–2078. https://doi.org/1007/s11738-012-1004-0.

Wu X., Cai K., Zhang G., Zeng F. 2017: Metabolite profiling of barley grains subjected to water stress: to explain the genotypic difference in drought-induced impacts on malting quality. Frontiers in Plant Science 8: 1547. https://doi.org/10.3389/fpls.2017.01547.

Xia Y., Li R., Bai G., SiddiQue K., Varshney R. K., Baum M., Yan G., Guo P. 2017: Genetic variations of HvP5CS1 and their association with drought tolerance related traits in barley (Hordeum vulgare L.). Scientific Reports 7(1): 7870. https://doi.org/10.1038/s41598-017-08393-0.

Xia Y., Li R., Ning Z., Bai G., SiddiQue K., Yan G., Baum M., Varshney R. K., Guo P. 2013: Single nucleotide polymorphisms in HSP17.8 and their association with agronomic traits in barley. PLoS ONE 8(2): e56816. https://doi.org/10.1371/journal.pone.0056816

Xu Q. J., Wang Y. L., Wei Z. X., Yuan H. J., Zeng X. Q., Tashi N. 2017: Cloning and functional characterization of the HbSYR1 gene encoding a syntaxin-related protein in Tibetan hul less barley (Hordeum vulgare L. var. nudum HK. f.). Genetics and Molecular Research 16(3): gmr16038909. https://doi.org/10.4238/gmr16038909

Xu Z.-S., Ni Z.-Y., Li Z.-Y., Li L.-C., Chen M., Gao D.-Y., Yu X.-D., Liu P., Ma Y.-Z. 2009: Isolation and functional characterization of HvDREB1-a gene encoding a dehydrationresponsive element binding protein in Hordeum vulgare. Journal of Plant Research 122(1): 121–130. https://doi.org/10.1007/s10265-008-0195-3.

Yao X., Wu K., Yao Y., Li J., Ren Y., Chi D. 2017: The response mechanism of the HVA1 gene in hulless barley underdrought stress. Italian Journal of Agronomy. 12(804): 357–363. https://doi.org/10.4081/ija.2017.804

Yuan H. J., Luo X. M., Nyima T. S., Wang Y. L., Xu Q. J., Zeng X. Q. 2015: Cloning and characterization of up-regulated HbSINA4 gene induced by drought stress in Tibetan hulless barley. Genetics and Molecular Research 14(4): 15312–15319. https://doi.org/10.4238/2015.November.30.7.

Published
2019-06-10
How to Cite
Schmidthoffer I., Csontos P., & Skribanek A. (2019). Genetic background of drought tolerance in barley. Botanikai Közlemények, 106(1), 131-144. https://doi.org/10.17716/BotKozlem.2019.106.1.131
Section
Review