On the communication of plants – what happens above the ground?

  • Zoltán Szigeti Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, Eötvös Loránd University; H-1117 Budapest, Pázmány Péter stny 1/c. Hungary
  • István Parádi Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, Eötvös Loránd University; H-1117 Budapest, Pázmány Péter stny 1/c. Hungary
Keywords: chemical defence, plant acoustic sensing, plant communication, plant-herbivore communication, review, volatile organic compounds

Abstract

Communication exists in all forms and levels of life; therefore, plants do also communicate, which has been of interest for plant biologists for a long time. Modern methods developed in the last 30-40 years made it possible to investigate this phenomenon more closely. Plant communication means the transfer of information between plants or plants and other organisms in their environment. It can happen between individuals of the same or different species and it covers also the exchange of cues between the plants and their microbial pathogens, insects or even symbiotic partners. Its most frequent tool, i.e. the „language” of plants is the excretion and sensing of different organic volatiles. In the present study, we cover the function and perception of organic volatiles and the factors disturbing it. We present the early results of plant acoustic sensing or hypothesized acoustic communication.

References

Alba J. M., Bleeker P. M., Glas J. J., Schimmel B., C., J., van Wijk M., Sabelis M., W., Schuurink R., C., Kant M.R. 2012: The impact of induced plant volatiles on plant-arthropod interactions. Arthropod-Plant Interactions In: Smagghe G., Diaz I. (eds) Arthropod-Plant Interactions. Progress in Biological Control, vol. 14., Springer, Dordrecht, pp. 15–73. https://doi.org/10.1007/978-94-007-3873-7_2

Ali M., Sugimoto K., Ramadan A., Arimura G. 2013: Memory of plant communications for priming anti-herbivore responses. Scientific Reports 3: 1872. https://doi.org/10.1038/srep01872

Arimura G., Pearse I. S. 2017: From the lab bench to the forest: ecology and defence mechanisms of volatile-mediated ’talking trees’. Advances in Botanical Research 82: 3–17. https://doi.org/10.1016/bs.abr.2016.08.001

Bailey N. W., Fowler-Finn K. D., Rebar D., Rodriguez R. L. 2013: Green symphonies or wind in the willows? Testing acoustic communication in plants. Behavioral Ecology 24: 797–798. https://doi.org/10.1093/beheco/ars228

Baldwin I. T. 2010: Plant volatiles. Current Biology 20(9): 392–397. https://doi.org/10.1016/j.cub.2010.02.052

Baldwin I. T., Halitschke R., Pachold A., von Dahl C. C. 2006: Volatile signalling in plant-plant interactions: „Talking trees” in the genomics era. Science 311: 812–815. https://doi.org/10.1126/science.1118446

Baldwin I. T., Schultz J. C. 1983: Rapid changes in tree leaf chemistry induced by damage: evidence for communication between plants. Science 221: 277–279. https://doi.org/10.1126/science.221.4607.277

Blande J. D. 2017: Plant communication with herbivores. Advances in Botanical Research 82: 281–304. https://doi.org/10.1016/bs.abr.2016.09.004

Blande J. D., Holopainen J. K., Niinemets Ü. 2014: Plant volatiles in polluted atmospheres: Stress responses and signal degradation. Plant, Cell and Environment 37: 1892–1904. https://doi.org/10.1111/pce.12352

Caruso Ch. M., Parachnowitsch A. L. 2016: Do plants eavesdrop on floral scent signals? Trends in Plant Science 21(1): 9–15. https://doi.org/10.1016/j.tplants.2015.09.001

Das A., Lee S-H., Hyun T. K., Kim S-W., Kim J-Y. 2013: Plant volatiles as method of communication. Plant Biotechnology Reports 7: 9–26. https://doi.org/10.1007/s11816-012-0236-1

Dolch R., Tscharntke T. 2000: Defoliation of alders (Alnus glutinosa) affects herbivory by leaf beetles on undamaged neighbours. Oecologia 125(4): 504–511. https://doi.org/10.1007/s004420000482

Dong F., Fu X., Watanabe N., Su X., Yang Z. 2016: Recent advances in the emission and functions of plant vegetative volatiles. Molecules 21: 124–133. https://doi.org/10.3390/molecules21020124

Dudareva N., Klempien A., Muhlemann J. K., Kaplan I. 2013: Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytologist 198: 16–32. https://doi.org/10.1111/nph.12145

Effah E., Holopainen J. K., McCormick A. C. 2019: Potential roles of volatile organic compounds in plant competition. Perspectives in Plant Ecology, Evolution and Systematics 38: 58–63. https://doi.org/10.1016/j.ppes.2019.04.003

Erb M. 2018: Volatiles as inducers and suppressors of plant defense and immunity – origins, specificity, perception and signaling. Current Opinion in Plant Biology 44: 117–121. https://doi.org/10.1016/j.pbi.2018.03.008

Fuchs A., Bowers M. D. 2004: Patterns of iridoid glycoside production and induction in Plantago lanceolata and the importance of plant age. Journal of Chemical Ecology 30(9): 1723–1741. https://doi.org/10.1023/b:joec.0000042398.13765.83

Gagliano M. 2013: Green symphonies: call for studies on acoustic communication in plants. Behavioral Ecology 24(4): 789–796. https://doi.org/10.1093/beheco/ars206

Gagliano M., Mancuso S., Robert D. 2012: Towards understanding plant bioacoustics. Trends in Plant Science 17(6): 323–325. https://doi.org/10.1016/j.tplants.2012.03.002

Girón-Calva P. S., Molina-Torres J., Heil M. J. 2012: Volatile dose and exposure time impact perception in neighboring plants. Journal of Chemical Ecology 38: 226–228. https://doi.org/10.1007/s10886-012-0072-3

Gosh R., Mishra R. C., Choi B., Kwon Y. S., Bae D. W., Park S-C., Jeong M-J., Bae H. 2016: Exposure to sound vibrations lead to transcriptomic, proteomic and hormonal changes in Arabidopsis. Scientific Reports 6: 33370. https://doi.org/10.1038/srep33370

Haswell E. S., Phillips R., Rees D.C. 2011: Mechanosensitive channels: what can they do and how do they do it? Structure 19(10): 1356–1369. https://doi.org/10.1016/j.str.2011.09.005

Heil M., Adame-Álvarez R. M. 2010: Short signalling distances make plant communication a soliloquy. Biology Letters 6: 843–845. https://doi.org/10.1098/rsbl.2010.0440

Heil M., Karban R. 2010: Explaining evolution of plant communication by airborne signals. Trends in Ecology and Evolution 25(3): 137–144. https://doi.org/10.1016/j.tree.2009.09.010

Hiltpold I., Toepfer S., Kuhlmann U., Turlings T. C. J. 2010: How maize root volatiles affect the efficacy of entomopathogenic nematodes in controlling the western corn rootworm? Chemoecology 20(2): 155–162. https://doi.org/10.1007/s00049-009-0034-6

Holopainen J. K., Gershenzon J. 2010: Multiple stress factors and the emission of plant VOCs. Trends in Plant Sciences 15(3): 176–184. https://doi.org/10.1016/j.tplants.2010.01.006

Jeong M-J., Shim C-K., Lee J-O., Kwon H-B., Kim Y-H., Lee S-K., Byun M-O., Park S-C. 2008: Plant gene responses to frequency-specific sound signals. Molecular Breeding 21: 217–226. https://doi.org/10.1007/s11032-007-9122-x

Jung J., Kim S-K., Kim J. Y., Jeong M-J., Ryu C-M. 2018: Beyond chemical triggers: Evidence for sound-evoked physiological reactions in plants. Frontiers in Plant Science 9: 25. https://doi.org/10.3389/fpls.2018.00025

Karban R. 2008: Plant behaviour and communication. Ecology Letters 11: 727–739. https://doi.org/10.1111/j.1461-0248.2008.01183.x

Karban R. 2020: The ecology and evolution of induced responses to herbivory and how plants perceive risk. Ecological Entomology 45(1): 1–9. https://doi.org/10.1111/een.12771

Karban, R., Shiojiri K. 2009: Self-recognition affects plant communication and defense. Ecology Letters 12: 502–506. https://doi.org/10.1111/j.1461-0248.2009.01313.x

Karban R., Shiojiri K., Ishizaki S., Wetzel W. C., Evans R. Y. 2013: Kin recognition affects plant communication and defence. Proceedings of the Royal Society B 280: 20123062. https://doi.org/10.1098/rspb.2012.3062

Karban R., Wetzel W. C., Shiojiri K., Ishizaki S., Ramirez S. R., Blande J. D. 2014: Deciphering the language of plant communication: volatile chemotypes of sagebrush. New Phytologist 204: 380–385. https://doi.org/10.1111/nph.12887

Karban R., Wetzel W. C., Shiojiri K., Pezzola E., Blande J. D. 2016: Geographic dialects in volatile communication between sagebrush individuals. Ecology 97(11): 2917–2924. https://doi.org/10.1002/ecy.1573

Kegge W., Pierik R. 2009: Biogenic volatile organic compounds and plant competition. Trends in Plant Science 15(3): 126–132. https://doi.org/10.1016/j.tplants.2009.11.007

Kessler A., Heil M. 2011: The multiple faces of indirect defences and their agents of natural selection. Functional Ecology 25: 348–357. https://doi.org/10.1111/j.1365-2435.2010.01818.x

Khait I., Lewin-Epstein O., Sharon R., Saban K., Perelman R., Boonman A., Yovel Y., Hadany L. 2019: Plants emit informative airborne sounds under stress. https://doi.org/10.1101/507590

Kigathi R. N., Weisser W. W., Veit D., Gershenzon J., Unsicker S. B. 2013: Plants suppress their emission of volatiles when growing with conspecifics. Journal of Chemical Ecology 39(4): 537–545. https://doi.org/10.1007/s10886-013-0275-2

Laschimke R., Burger M., Vallen H. 2006: Acoustic emission analysis and experiments with physical model systems reveal a peculiar nature of the xylem tension. Journal of Plant Physiology 163: 996–1007. https://doi.org/10.1016/j.jplph.2006.05.004

Leach J. E., Triplett L. R., Argueso C. T., Trivedi P. 2017: Communication in the phytobiome. Cell 169(4): 587–596. https://doi.org/10.1016/j.cell.2017.04.025

Li T., Blande J. D. 2017: Volatile-mediated within-plant signaling in hybrid aspen: required for systemic responses. Journal of Chemical Ecology 43(4): 327–338. https://doi.org/10.1007/s10886-017-0826-z

Markovic D., Colzi I., Taiti C., Ray S., Scalone R., Ali J. G., Mancuso S., Ninkovic V. 2019: Airborne signals synchronize the defenses of neighboring plants in response to touch. Journal of Experimental Botany 70(2): 691–700. https://doi.org/10.1093/jxb/ery375

McFrederick Q. S., Fuentes J. D., Roulston T., Kathilankal J. C., Lerdau M. 2009: Effects of air pollution on biogenic volatiles and ecological interactions. Oecologia 160(3): 411–420. https://doi.org/10.1007/s00442-009-1318-9

Meena R. K., Jangra S., Wadhwa Z., Monika, Wati L. 2017: Role of plant volatiles in defense and communication. International Journal of Current Microbiology and Applied Sciences 6(4): 300–313. https://doi.org/10.20546/ijcmas.2017.604.033

Mescher M. C., Runyon J. B., De Moraes C. M. 2006: Plant host finding by parasitic plants. A new perspective on plant to plant communication. Plant Signaling and Behavior 1(6): 284–286. https://doi.org/10.4161/psb.1.6.3562

Mishra R. C., Ghosh R., Bae H. 2016: Plant acoustics: in the search of a sound mechanism for sound signaling in plants. Journal of Experimental Botany 67(15): 4483–4494. https://doi.org/10.1093/jxb/erw235

Mithöfer A., Boland W. 2012: Plant defense against herbivores: chemical aspects. Annual Review of Plant Biology 63: 431–450. https://doi.org/10.1146/annurev-arplant-042110-103854

Mithöfer A., Boland W. 2016: Do you speak chemistry? EMBO Reports 17(5): 626–629. https://doi.org/10.15252/embr.201642301

Moreira X., Abdala-Roberts L. 2019: Specificity and context-dependency of plant-plant communication in response to insect herbivory. Current Opinion in Insect Science 32: 15–21. https://doi.org/10.1016/j.cois.2018.09.003

Niinemets Ü., Fares S., Harley P., Jardine K. J. 2014: Bidirectional exchange of biogenic volatiles with vegetation: emission sources, reactions, breakdown and deposition. Plant Cell and Environment 37: 1790–1803. https://doi.org/10.1111/pce.12322

Ninkovic V., Olsson U., Pettersson J. 2002: Mixing barley cultivars affects aphid host plant acceptance in field experiments. Entomologia Experimentalis et Applicata 102(2): 177–182. https://doi.org/10.1046/j.1570-7458.2002.00937.x

Ninkovic V., Rensing M., Dahlin I., Markovic D. 2019: Who is my neighbor? Volatile cues in plant interactions. Plant Signaling and Behavior 14(9): 1634993. https://doi.org/10.1080/15592324.2019.1634993

Pearse I. S., Hughes K., Shiojiri K., Ishizaki S., Karban R. 2013: Interplant volatile signaling in willows: revisiting the original talking trees. Oecologia 172: 869–875. https://doi.org/10.1007/s00442-013-2610-2

Perks M. P., Irvine J., Grace J. 2004: Xylem acoustic signals from mature Pinus sylvestris during an extended drought. Annals of Forest Science 61(1): 1–8. https://doi.org/10.1051/forest:2003079

Pickett J. A., Khan Z. R. 2016: Plant volatile-mediated signalling and its application in agriculture: successes and challenges. New Phytologist 212(4): 856–870. https://doi.org/10.1111/nph.14274

Rhoades D. F. 1983: Responses of alder and willow to attack by tent caterpillars and webworms: evidence for pheromonal sensitivity of willows. In: Hedin P. A. (ed.): Plant Resistance to Insects. American Chemical Society Symposium Series, pp. 55–68. https://doi.org/10.1021/bk-1983-0208.ch004

Rodrigo-Moreno A., Bazihizina N., Azzarello E., Masi E, Tranb D., Bouteau F., Baluska F., Mancuso S. 2017: Root phonotropism: Early signalling events following sound perception in Arabidopsis roots. Plant Science 264: 9–15. https://doi.org/10.1016/j.plantsci.2017.08.001

Runyon J. B., Mescher M. C., De Moraes C. M. 2006: Volatile chemical cues guide host location and host selection by parasitic plants. Science 313: 1964–1967. https://doi.org/10.1126/science.1131371

Scala A., Allmann S., Mirabella R., Haring M. A., Schuurink R. C. 2013: Green leaf volatiles: a plant’s multifunctional weapon against herbivores and pathogens. International Journal of Molecular Sciences 14: 17781–17811. https://doi.org/10.3390/ijms140917781

Schaefer H. M., Ruxton G. D. 2011: Communication and the evolution of plant-animal interactions. In: Schaefer H. M., Ruxton G. D. (eds): Plant-Animal Communication, Oxford Univ. Press, Oxford, New York, pp. 1–20.

Schenk H. J., Seablom E. W. 2010: Evolutionary ecology of plant signals and toxins: a conceptual framework. In: Baluska F., Ninkovic V. (eds): Plant Communication from an Ecological Perspective, Signaling and Communication in Plants. Springer-Verlag, Berlin. Heidelberg, pp. 1–19. https://doi.org/10.1007/978-3-642-12162-3_1

Schöner M. G., Schöner C. R., Simon R., Grafe U., Pulchmaille S. J., Ji L. L., Kerth G. 2015: Bats are acoustically attracted to mutualistic carnivorous plants. Current Biology 25(14): 1911–1916. https://doi.org/10.1016/j.cub.2015.05.054

Schöner M. G., Simon R., Schöner C. R. 2016: Acoustic communication in plant-animal interactions. Current Opinion in Plant Biology 32: 88–95. https://doi.org/10.1016/j.pbi.2016.06.011

Sharifi R., Lee S-M., Ryu C-M. 2018: Microbe-induced plant volatiles. New Phytologist 220: 684–691. https://doi.org/10.1111/nph.14955

Simon R., Holderied M. W., Koch C. U., von Helversen O. 2011: Floral acoustics: conspicuous echoes of a dish-shaped leaf attract bat pollinators. Science 333: 631–633. https://doi.org/10.1126/science.1204210

Šimpraga M., Takabayashi J., Holopainen J. K. 2016: Language of plants: Where is the word? Journal of Integrative Plant Biology 58(4): 343–349. https://doi.org/10.1111/jipb.12447

Šimpraga M., Verbeeck H., Bloemen J., Vanhaecke L., Demarcke M., Joó E., Pokorska O., Amelynck C., Schoon N., Dewulf J., Van Langenhove H., Heinesch B., Aubinet M., Steppe K. 2013: Vertical canopy gradient in photosynthesis and monoterpenoid emissions: An insight into the chemistry and physiology behind. Atmospheric Environment 80: 85–95. https://doi.org/10.1016/j.atmosenv.2013.07.047

Stenberg J. A., Heil M., Åhman I., Björkman C. 2015: Optimizing crops for biocontrol of pests and disease. Trends in Plant Science 20(11): 698–712. https://doi.org/10.1016/j.tplants.2015.08.007

Tscharntke T., Thiessen S., Dolch R., Boland W. 2001: Herbivory, induced resistance, and interplant signal transfer in Alnus glutinosa. Biochemical Systematics and Ecology 29(10): 1025–1047. https://doi.org/10.1016/S0305-1978(01)00048-5

Veits M., Khait I, Obolski U., Zinger E., Boonman A., Goldshtein A., Saban K., Seltzer R., Ben-Dor U., Estlein P., Kabat A., Peretz D., Ratzersdorfer I., Krylov S., Chamovitz D., Sapir Y., Yovel Y., Hadany L. 2019: Flowers respond to pollinator sound within minutes by increasing nectar sugar concentration. Ecology Letters 22: 1483–1492. https://doi.org/10.1111/ele.13331

Wilson J. K., Kessler A., Woods H. A. 2015: Noisy communication via airborne infochemicals. BioScience 65(7): 667–677. https://doi.org/10.1093/biosci/biv062

Yoneya K., Takabayashi J. 2014: Plant-plant communication mediated by airborne signals: ecological and plant physiological perspectives. Plant Biotechnology 31(5): 409-416. https://doi.org/10.5511/plantbiotechnology.14.0827a

Zebelo S. A., Matsui K., Ozawa R., Maffei M. E. 2012: Plasma membrane potential depolarization and cytosolic calcium flux are early events involved in tomato (Solanum lycopersicon) plant-to-plant communication. Plant Science 196: 93–100. https://doi.org/10.1016/j.plantsci.2012.08.006

Zweifel R., Zeugin F. 2008: Ultrasonic acoustic emissions in drought-stressed trees – more than signals from cavitation? New Phytologist 179: 1070–1079. https://doi.org/10.1111/j.1469-8137.2008.02521.x

Published
2020-05-22
How to Cite
Szigeti Z., & Parádi I. (2020). On the communication of plants – what happens above the ground?. Botanikai Közlemények, 107(1), 19-32. https://doi.org/10.17716/BotKozlem.2020.107.1.19
Section
Review