Az árpa szárazságtűrésének genetikai háttere
Absztrakt
A szárazságtűrés fokozása gyakorlati szempontból egyre fontosabb tényező a termesztett gabonáinknál. Nagy hangsúlyt kap a szárazságtűrésben szerepet játszó gének azonosítása és minél szélesebb körű ismerete. E munkában összefoglalva ismertetjük azokat a géneket (Hsdr4, Dhn1, Dhn3, Dhn5, Dhn9, P5CS, HSP17, HSP18, HSP70, HSP90 és HVA1), amiket a termesztett árpánál (Hordeum vulgare L.) a szárazságtűréssel már kapcsolatba hoztak és részletesen vizsgáltak. Ezen gének expressziója a szárazságtűrő képesség mértékére utalhat.
Hivatkozások
Abu-Romman S. M., Ammari T. G., Irshaid L. A., Salameh N. M., Hasan M. K., Hasan H. S.201 1: Cloning and expression patterns of the HvP5CS gene from barley (Hordeum vulgare). Journal of Food, Agriculture & Environment 9(3–4): 279–284. https://doi.org/10.1234/4.2011.2269
Ahmed I. M., Dai H., Zheng W., Cao F., Zhang G., Sun D., Wu F. 2013: Genotypic differences in physiological characteristics in the tolerance to drought and salinity combined stress between Tibetan wild and cultivated barley. Plant Physiology and Biochemistry 63: 49–60. https://doi.org/10.1016/j.plaphy.2012.11.004
Ahmed I. M., Nadira U. A., Cao F., He X., Zhang G., Wu F. 2016: Physiological and molecular analysis on root growth associated with the tolerance to aluminum and drought individual and combined in Tibetan wild and cultivated barley. Planta 243: 973. https://doi.org/10.1007/s00425-015-2442-x
Akash M. W., Al-abdallat A. M., Saoub H. M., Ayad J. Y. 2009: Molecular and field comparison of selected barley cultivars for drought tolerance. Journal of New Seeds 10(2): 98–111. https://doi.org/10.1080/15228860902901710
Al-Ajlouni Z. I., Al-Abdallat A. M., Al-Ghzawi A. L. A., Ayad J. Y., Elenein J. M. A., Al-Quraan N. A., Baenziger S. 2016: Impact of pre-anthesis water deficit on yield and yield components in barley (Hordeum vulgare L.) plants grown under controlled conditions. Agronomy 6: 33. https://doi.org/10.3390/agronomy6020033.
Albayrak G., Yoruk E., Diken O. 2012: Quantitative gene expression analysis of WRKY38 and DREB2 transcription factors responsible for drought and salt tolerance in barley (Hordeum vulgare L.). New Biotechnology 29: S22. https://doi.org/10.1016/j.nbt.2012.08.053
Al-Momany B., Abu-Romman S. 2014: Cloning and molecular characterization of a flavin-dependent oxidoreductase gene from barley. Journal of Applied Genetics 55(4): 457–468. https://doi.org/10.1007/s13353-014-0227-8
Bandurska H., Niedziela J., Pietrowska-Borek M., Nuc K., Chadzinikolau T., Radzikowska D. 2017: Regulation of proline biosynthesis and resistance to drought stress n two barley (Hordeum vulgare L.) genotypes of different origin. Plant Physiology and Biochemistry 118: 427–437. https://doi.org/10.1016/j.plaphy.2017.07.006
Binott J. J. 2015: Physiological and molecular characterization of Kenyan barley lines (Hordeum vulgare L.) for abiotic stress tolerance and malting attributes. PhD Dissertation, Rheinischen Friedrich-Wilhelms-Universität, Bonn. https://d-nb.info/1084760584/34
Bláha L., Středa T. 2016: Plant integrity – the important factor of adaptability to stress conditions. Abiotic and Biotic Stress in Plants – Recent Advances and Future Perspectives. https://doi.org/10.5772/62306
Chaumont F., Tyerman S. D. 2014: Aquaporins: highly regulated channels controlling plant water relations. Plant Physiology 164(4): 1600–1618. https://doi.org/10.1104/pp.113.233791
Chaves M. M., Flexas J., Pinheiro C. 2009: Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany 103(4): 551–560. https://doi.org/10.1093/aob/mcn125
Chen G., Li C., Shi Y., Nevo E. 2008: Wild barley, Hordeum spontaneum, a genetic resource for crop improvement in cold and arid regions. Sciences in Cold and Arid Regions 1: 0115-0124.
Chen G., Li H., Wei Y., Zheng Y. L., Zhou M., Liu C. 2016: Pleiotropic effects of the semidwarfing gene uzu in barley. Euphytica 209: 749–755. https://doi.org/10.1007/s10681-016-1668-4
Cieśla A., Mituła F., Misztal L., Fedorowicz-Strońska O., Janicka S., TajdelZielińska M., Marczak M., Janicki M., Ludwików A., Sadowski J. 2016: A role for barley calcium-dependent protein kinase CPK2a in the response to drought. Frontiers in Plant Science 7: 1550. https://doi.org/10.3389/fpls.2016.01550
Close T. J., Dong-Woog C., Salvi S., Tuberosa R., Ryabushkina N., Nevo E. 2000: Allelic variation at loci encoding dehydrins in wild and cultivated barley. In: Plant and Animal Genome, San Diego, VIII: 9-12.
Daszkowska-Golec A., Skubacz A., Marzec M., Slota M., Kurowska M., Gajecka M., Gajewska P., Płociniczak T., Sitko K., Pacak A., Szweykowska-Kulinska Z., Szarejko I. 2017: Mutation in HvCBP20 (Cap Binding Protein 20) adapts barley to drought stress at phenotypic and transcriptomic levels. Frontiers in Plant Science 8: 942. https://doi.org/10.3389/fpls.2017.00942
Deng G., Li ang J., Xu D., Long H., Pan Zh., Yu M. 2013: The relationship between proline content, the expression level of P5CS (Δ1-pyrroline-5-carboxylate synthetase), and drought tolerance in Tibetan hulless barley (Hordeum vulgare var. nudum). Russian Journal of Plant Physiology 60(5): 693–700. https://doi.org/10.1134/S1021443713050038
Djemal R., Mila I., Bouzayen M., Pirrello J., Khoudi H. 2018: Molecular cloning and characterization of novel WIN1/SHN1 ethylene responsive transcription factor HvSHN1 in barley (Hordeum vulgare L.). Journal of Plant Physiology 228: 39–46. https://doi.org/10.1016/j.jplph.2018.04.019
Faralli M., Lektemur C., Rosellini D., Gürel F. 2015: Effects of heat shock and salinity on barley growth and stress-related gene transcription. Biologia Plantarum 59(3): 537–546. https://doi.org/10.1007/s10535-015-0518-x.
Fedorowicz-Strońska O., Koczyk G., Kaczmarek M., Krajewski P., Sadowski J. 2017: Genome-wide identification, characterisation and expression profiles of calcium-dependent pro tein kinase genes in barley (Hordeum vulgare L.). Journal of Applied Genetics 58(1):11–22. https://doi.org/10.1007/s13353-016-0357-2
Feuillet C., Langridge P., Waugh R. 2008: Cereal breeding takes a walk on the wild side. Trends in Genetics 24(1): 24–32. https://doi.org/10.1016/j.tig.2007.11.001
Gous P. W., Gilbert R. G., Fox G. P. 2015: Drought-proofing barley (Hordeum vulgare) and its impact on grain quality: a review. Journal of The Institute of Brewing 121: 19–27. https://doi.org/10.1002/jib.187
Guo B., Wei Y., Xu R., Lin S., Luan H., Lv C. 2016: Genome-wide analysis of APETALA2/ethylene-responsive factor (AP2/ERF) gene family in barley (Hordeum vulgare L.). PLoS ONE 11(9): e0161322. https://doi.org/10.1371/journal.pone.0161322
Gürel F., Öztürk Z. N., Uçarlı C., Rosellini D. 2016: Barley genes as tools to confer abiotic stress tolerance in crops. Frontiers in Plant Science 7: 1137. https://doi.org/10.3389/fpls.2016.01137
Habte E., Müller L. M., Shtaya M., Davis S. J., Korff M. 2014: Osmotic stress at the barley root affects expression of circadian clock genes in the shoot. Plant, Cell and Environment 37: 1321–1337. https://doi.org/10.1111/pce.12242
Hanson A. D., Nelson C. E., Everson E. H. 1977: Evaluation of free proline accumulation as an index of drought resistance using two contrasting barley cultivars. Crop Science 17: 720–726. https://doi.org/10.2135/cropsci1977.0011183X001700050012x
Harb A., Awad D, Samarah N. 2015: Gene expression and activity of antioxidant enzymes in barley (Hordeum vulgare L.) under controlled severe drought. Journal of Plant Interactions 10(1): 109–116. https://doi.org/10.1080/17429145.2015.1033023
Harb A. M., Samarah N. H. 2015: Physiological and molecular responses to controlled severe drought in two barley (Hordeum vulgare L.) genotypes. Journal of Crop Improvement 29(1): 82–94. https://doi.org/10.1080/15427528.2014.976802
Hayano-Kanashiro C., Calderon-Vazquez C., Ibarra-Laclette E., Herrera-Estrella L., Simpson J. 2009: Analysis of gene expression and physiological responses in three Mexican maize landraces under drought stress and recovery irrigation. PLoS ONE 4(10): e7531. https://doi.org/10.1371/journal.pone.0007531
Janeczko A., Gruszka D., Pociecha E., Dziurka M., Filek M., Jurczyk B., Kalaji H. M., Kocurek M., Waligórski P. 2016: Physiological and biochemical characterisation of watered and drought-stressed barley mutants in the HvDWARF gene encoding C6-oxidase involved in brassinosteroid biosynthesis. Plant Physiology and Biochemistry 99: 126–141. https://doi.org/10.1016/j.plaphy.2015.12.003
Karami A., Shahbazi M., Niknam V., Shobbar Z. S., Tafreshi R. S., Abedini R., Mabood H. E. 2013: Expression analysis of dehydrin multigene family across tolerant and susceptible barley (Hordeum vulgare L.) genotypes in response to terminal drought stress. Acta Physiologiae Plantarum 35: 2289–2297. https://doi.org/10.1007/s11738-013-1266-1
Li C. D., Langridge P., Zhang X. Q., Eckstein P. E., Rossnagel B. G., Lance R. C. M. 2002: Mapping of barley (Hordeum vulgare L.) β-amylase alleles in which an amino acid substitution determines β-amylase isoenzyme type and the level of free β-amylase. Journal of Cereal Science 35: 39–50. https://doi.org/10.1006/jcrs.2001.0398.
Matsumoto T., Morishige H., Tanaka T., Kanamori H., Komatsuda T., Sato K., Itoh T., Wu J., Nakamura S. 2014: Transcriptome analysis of barley identifies heat shock and HDZip I transcription factors up-regulated in response to multiple abiotic stresses. Molecular Breeding 34: 761–768. https://doi.org/101007/s1103201400489.
Mazzucotelli E., Mastrangelo A. M., Crosatti C., Guerra D., Stanca A. M., Cattivelli L. 2008: Abiotic stress response in plants: when post-transcriptional and post-translational regulations control transcription. Plant Science 174(4): 420–431. https://doi.org/10.1016/j.plantsci.2008.02.005
Mezer de M, Turska-Taraska A., Kaczmarek Z., Glowacka K., Swarcewicz B., Rorat T. 2014: Differential physiological and molecular response of barley genotypes to water deficit. Plant Physiology and Biochemistry 80: 234–248.
https://doi.org/10.1016/j.plaphy.2014.03.025
Nagy B., Majer P., Mihály R., Pauk J., Horváth G. V. 2016: Stress tolerance of transgenic barley accumulating the alfalfa aldose reductase in the cytoplasm and the chloroplast. Phytochemistry 129: 14–23. https://doi.org/10.1016/j.phytochem.2016.07.007
Papaefthimiou D., Tsaftaris A. S. 2012a: Significant induction by drought of HvPKDM7-1, a gene encoding a jumonji-like histone demethylase homologue in barley (H. vulgare). Acta Physiologiae Plantarum 34(3): 1187–1198. https://doi.org/10.1007/s11738-011-0915-5
Papaefthimiou D., Tsaftaris A.S. 2012b: Characterization of a drought inducible trithoraxlike H3K4 methyltransferase from barley. Biologia Plantarum 56(4): 683–692. https://doi.org/10.1007/s10535-012-0125-z
Pospíšilová H., Jiskrová E., Vojta P., Mrízová K., Kokáš F., Čudejková M. M., Bergougnoux V., Plíhal O., Klimešová J., Novák O., Dzurová L., Frébort I., Galuszka P. 2016: Transgenic barley overexpressing a cytokinin dehydrogenase gene shows greater tolerance to drought stress. New Biotechnology 33(5B): 692–705. https://doi.org/10.1016/j.nbt.2015.12.005
Pourabed E., Golmohamadi F. G., Monfared P. S., Razavi S. M., Shobbar Z. S. 2015: Basic leucine zipper family in barley: genome-wide characterization of members and expression analysis. Molecular Biotechnology 57(1): 12–26. https://doi.org/10.1007/s12033-014-9797-2
Qian G., Han Z., Zhao T., Deng G., Pan Z., Yu M. 2007: Genotypic variability in sequence and expression of HVA1 gene in Tibetan hulless barley, Hordeum vulgare ssp. vulgare, associated with resistance to water deficit. Australian Journal of Agricultural Research 58(5): 425–431. https://doi.org/10.1071/AR06300
Ramireddy E., Hosseini S. A., Eggert K., Gillandt S., Gnad H., Wirén N., Schmülling T. 2018: Root engineering in barley: increasing cytokinin degradation produces a larger root system, mineral enrichment in the shoot and improved drought tolerance. Plant Physiology 177: 1078–1095. https://doi.org/10.1104/pp.18.00199
Rezaei M. K., Shobbar Z.-S., Shahbazi M., Abedini R., Zare S. 2013: Glutathione S-transferase (GST) family in barley: Identification of members, enzyme activity, and gene expression pattern. Journal of Plant Physiology 170(14): 1277–1284. https://doi.org/10.1016/j.jplph.2013.04.005
Schmidthoffer I., Szilák L., Molnár P., Csontos P., Skribanek A. 2018: Drought tolerance of European barley (Hordeum vulgare L.) varieties. Agriculture (Poľnohospodárstvo), 64(3): 137–142. https://doi.org/10.2478/agri-2018-0014
Seiler C., Harshavardhan V. T., Reddy P. S., Hensel G., Kumlehn J., Eschen-Lippold L., Rajesh K., Korzun V., Wobus U., Lee J., Selvaraj G., Sreenivasulu N. 2014: Abscisic acid flux alterations result in differential abscisic acid signaling responses and impact assimilation efficiency in barley under terminal drought stress. Plant Physiology 164: 1677–1696. https://doi.org/10.1104/pp.113.229062
Shaar-Moshe L., Hübner S., Peleg Z. 2015: Identification of conserved droughtadaptive genes using a cross-species meta-analysis approach. BMC Plant Biology. 15: 111. https://doi.org/10.1186/s12870-015-0493-6
Singh T. N., Aspinall D., Paleg L. G. 1972: Proline accumulation and varietal adaptability to drought in barley: a potential metabolic measure of drought resistance. Nature New Biology 236(67): 188–190. https://doi.org/10.1038/newbio236188a0
Skribanek A., Schmidthoffer I., Csontos P. 2016: Szárazságstressz hatása 22 árpafajta csíranövényének fotoszintetikus paramétereire. Botanikai Közlemények 103(2): 237–248. https://doi.org/10.17716/BotKozlem.2016.103.2.237
Sńiegowska-Świerk K., Dubas E., Rapacz M. 2015: Drought-induced changes in the actin cyto skeleton of barley (Hordeum vulgare L.) leaves. Acta Physiologiae Plantarum 37: 73. https://doi.org/10.1007/s11738-015-1820-0
Suprunova T., Krugman T., Distelfeld A., Fahima T., Nevo E., Korol A. 2007: Identification of a novel gene (Hsdr4) involved in water-stress tolerance in wild barley. Plant Molecular Biology 64(1–2): 17–34. https://doi.org/10.1007/s11103-006-9131-x
Suprunova T., Krugman T., Fahima T., Chen G., Shams I., Korol A., Nevo E. 2004: Differential expression of dehydrin genes in wild barley, Hordeum spontaneum, associated with resistance to water deficit. Plant, Cell and Environment 27: 1297–1308. https://doi.org/10.1111/j.1365-3040.2004.01237.x
Svoboda P., Janska A., Spiwok V., Prasil I. T., Kosova K., Vitamvas P., Ovesna J. 2016: Global scale transcriptional profiling of two contrasting barley genotypes exposed to moderate drought conditions: Contribution of leaves and crowns to water shortage coping strategies. Frontiers in Plant Science 7: 1958. https://doi.org/10.3389/fpls.2016.01958
Szigeti Z. 2018: A növényi stresszel kapcsolatos felfogásunk változásai. Botanikai Közlemények 105(2): 165–178. https://doi.org/10.17716/BotKozlem.2018.105.2.165
Temel A., Janack B., Humbeck K. 2017: Drought stress-related physiological changes and histone modifications in barley primary leaves at HSP17 gene. Agronomy 7: 43. https://doi.org/10.3390/agronomy7020043
Tester M., Langridge P. 2010: Breeding technologies to increase crop production in a changing world. Science 327(5967): 818–822. https://doi.org/10.1126/science.1183700.
Velasco-Arroyo B., Diaz‐Mendoza M., Gomez‐Sanchez A., Moreno‐Garcia B., Santamaria M. E., Torija‐Bonilla M., Hensel G., Kumlehn J., Martinez M., Diaz I. 2018: Silencing barley cystatins HvCPI‐2 and HvCPI‐4 specifically modifies leaf responses to drought stress. Plant Cell & Environment 41: 1776–1790. https://doi.org/10.1111/pce.13178
Versalus P.E., Agarwal M., Katiyar-Agarwal S., Zhu J., Zhu J.-K. 2006: Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. The Plant Journal 45: 523–539. https://doi.org/10.1111/j.1365-313x.2005.02593.x
Wehner G., Balko C., Humbeck K., Zyprian E., Ordon F. 2016: Expression profiling of genes involved in drought stress and leaf senescence in juvenile barley. BMC Plant Biology 16: 3. https://doi.org/10.1186/s12870-015-0701-4
Wójcik-Jagla M., Rapacz M., Barcik W., Janowiak F. 2012: Differential regulation of barley (Hordeum distichon) HVA1 and SRG6 transcript accumulation during the induction of soil and leaf water deficit. Acta Physiologiae Plantarum 34: 2069–2078. https://doi.org/1007/s11738-012-1004-0.
Wu X., Cai K., Zhang G., Zeng F. 2017: Metabolite profiling of barley grains subjected to water stress: to explain the genotypic difference in drought-induced impacts on malting quality. Frontiers in Plant Science 8: 1547. https://doi.org/10.3389/fpls.2017.01547.
Xia Y., Li R., Bai G., SiddiQue K., Varshney R. K., Baum M., Yan G., Guo P. 2017: Genetic variations of HvP5CS1 and their association with drought tolerance related traits in barley (Hordeum vulgare L.). Scientific Reports 7(1): 7870. https://doi.org/10.1038/s41598-017-08393-0.
Xia Y., Li R., Ning Z., Bai G., SiddiQue K., Yan G., Baum M., Varshney R. K., Guo P. 2013: Single nucleotide polymorphisms in HSP17.8 and their association with agronomic traits in barley. PLoS ONE 8(2): e56816. https://doi.org/10.1371/journal.pone.0056816
Xu Q. J., Wang Y. L., Wei Z. X., Yuan H. J., Zeng X. Q., Tashi N. 2017: Cloning and functional characterization of the HbSYR1 gene encoding a syntaxin-related protein in Tibetan hul less barley (Hordeum vulgare L. var. nudum HK. f.). Genetics and Molecular Research 16(3): gmr16038909. https://doi.org/10.4238/gmr16038909
Xu Z.-S., Ni Z.-Y., Li Z.-Y., Li L.-C., Chen M., Gao D.-Y., Yu X.-D., Liu P., Ma Y.-Z. 2009: Isolation and functional characterization of HvDREB1-a gene encoding a dehydrationresponsive element binding protein in Hordeum vulgare. Journal of Plant Research 122(1): 121–130. https://doi.org/10.1007/s10265-008-0195-3.
Yao X., Wu K., Yao Y., Li J., Ren Y., Chi D. 2017: The response mechanism of the HVA1 gene in hulless barley underdrought stress. Italian Journal of Agronomy. 12(804): 357–363. https://doi.org/10.4081/ija.2017.804
Yuan H. J., Luo X. M., Nyima T. S., Wang Y. L., Xu Q. J., Zeng X. Q. 2015: Cloning and characterization of up-regulated HbSINA4 gene induced by drought stress in Tibetan hulless barley. Genetics and Molecular Research 14(4): 15312–15319. https://doi.org/10.4238/2015.November.30.7.