Changes in the diversity and species composition of a seminatural saline pasture under different grassland management regimes
Abstract
The Eurasian forest-steppe that covers a large part of the Carpathian Basin was home to a dominant grassland forage-based livestock production for several decades. In the 21st century, the area of grassland under grassland management, now abandoned, is increasing as a result of steadily declining grazing livestock numbers and limited support for grassland use for conservation purposes. At the same time, overgrazing in pasture gardens established to address labour shortages is causing depletion. In our study, we followed the changes in diversity and species composition of an externally managed semi-natural grassland under different management regimes. In an experiment launched in 2009 on the Hungarian Great Plain in a meadow with transitional grassland association between Agrostio stoloniferae-Alopecuretum pratensis and Achilleo setaceae-Festucetum pseudovinae, the treatments applied were zero-utilisation (neither grazed nor mowed), mowing, meadow grazing (mowing and sheep grazing) and overgrazing. Of the complete 11-year period of the experiment, the last 4 years (2017–2020) were studied. Once a year, a phytocoenological survey was carried out, recording the cover of each plant species. Our results showed that Shannon diversity was significantly higher in the overgrazed and meadow-grassland areas than in the zero utilisation or mowed grassland, mainly due to differences in species numbers. The meadow grassland was the most species-rich with 29 plant species over the 4 years of the study, while the most species-poor was the zero utilisation grassland with only 6 species in 2017. Evenness values differed little between treatments. The Shannon diversity value did not change significantly over the 4 years of the study within a given grassland utilisation. In the mowing and zero utilisation treatments, the proportion of grasses in species number and total cover was higher than in the meadow and overgrazed treatments. The cover of the tall grass Alopecurus pratensis dominant in the mowing and meadow treatments decreased to below 10% in the overgrazed grassland. With increasing grazing intensity, an advance of the short grass Festuca pseudovina was observed. At zero utilisation, Rosa canina causes shrub encroachment. The annual grass Hordeum murinum appeared only in the overgrazing treatment, and its cover increased from 13.5% to 22.9% between 2017 and 2020, which may already represent a significant potential for animal health risk. The results of our research suggest that, under similar climatic and soil conditions to the habitat under study, meadow management practices are the most likely to maintain the original diversity of semi-natural grassland associations.
References
'269/2007. (X. 18.) Korm. rendelet a NATURA 2000 gyepterületek fenntartásának földhasználati szabályairól. https://net.jogtar.hu/jogszabaly?docid=a0700269.kor
Abu Hammad A., Tumeizi A. 2012: Land degradation: socioeconomic and environmental causes and consequences in the eastern Mediterranean. Land Degradation & Development 23(3): 216–226. https://doi.org/10.1002/ldr.1069
Allen V. G., Batello C., Berretta E. J., Hodgson J., Kothmann M., Li X., McIvor J., Milne J., Morris C., Peeters A., Sanderson M. 2011: An international terminology for grazing lands and grazing animals. Grass and Forage Science 66(1): 2–28. https://doi.org/10.1111/j.1365-2494.2010.00780.x
Andrade B. O., Marchesi E., Burkart S., Setubal R. B., Lezama F., Perelman S., Schneider A. A., Trevisan R., Overbeck G. E., Boldrini I. I. 2018: Vascular plant species richness and distribution in the Río de la Plata grasslands. Botanical Journal of the Linnean Society 188(3): 250–256. https://doi.org/10.1093/botlinnean/boy063
Anonymus 2024: Juhtenyészetek és kecsketenyészetek Magyarországon – tényleges adatok tükrében. 2024. szeptember. In: Sáfár L., Lévai A. (szerk.) A Magyar Juhtenyésztők és Kecsketenyésztők Szövetsége kiadványa. HVG Kiadó Zrt., Budapest. pp. 104–118.
Bajor Z., Zimmermann Z., Szabó G., Fehér Zs., Járdi I., Lampert R., Kerényi-Nagy V., Penksza P., L. Szabó Zs., Székely Zs., Wichmann B., Penksza K. 2016: Effect of conservation management practices on sand grassland vegetation in Budapest, Hungary. Applied Ecology and Environmental Research 14(3): 233–247. https://doi.org/10.15666/aeer/1403_233247
Bakker J. P., Berendse F. 1999: Constraints in the restoration of ecological diversity in grassland and heathland communities. Trends in Ecology & Evolution 14(2): 63–68. https://doi.org/10.1016/S0169-5347(98)01544-4
Balázs F. 1960: A gyepek botanikai és gazdasági értékelése. A Keszthelyi Mezőgazdasági Akadémia Kiadványai 8. Mezőgazdasági Kiadó, Budapest, 28 pp.
Bardgett R. D., Bullock J. M., Lavorel S., Manning P., Schaffner U., Ostle N., Chomel M., Durigan G., Fry E. L., Johnson D., Lavallee J. M., Le Provost G., Luo S., Png K., Sankaran M., Hou X., Zhou H., Ma L., Ren W., Li X., Ding Y., Li Y., Shi H. 2021: Combatting global grassland degradation. Nature Reviews Earth & Environment 2: 720–735. https://doi.org/10.1038/s43017-021-00207-2
Bartha S., Szentes Sz., Horváth A., Házi J., Zimmermann Z., Molnár Cs., Dancza I., Margóczi K., Pál R. W., Purger D., Schmidt D., Óvári M., Komoly C., Sutyinszki Zs., Szabó G., Csathó A. I., Juhász M., Penksza K., Molnár Zs. 2014: Impact of midsuccessional dominant species on the diversity and progress of succession in regenerating temperate grasslands. Applied Vegetation Science 17(2): 201–213. https://doi.org/10.1111/avsc.12066
Borer E. T., Seabloom E. W., Gruner D. S., Harpole W. S., Hillebrand H., Lind E. M., Adler P. B., Alberti J., Anderson T. M., Bakker J. D., Biederman L., Blumenthal D., Brown C. S., Brudvig L. A., Buckley Y. M., Cadotte M., Chu C., Cleland E. E., Crawley M. J., Daleo P., Damschen E. I., Davies K. F., DeCrappeo N. M., Du G., Firn J., Hautier Y., Heckman R. W., Hector A., Hillerislambers J., Iribarne O., Klein J. A., Knops J. M. H., La Pierre K. J., Leakey A. D. B., Li W., MacDougall A. S., McCulley R. L., Melbourne B. A., Mitchell C. E., Moore J. L., Mortensen B., O’Halloran L. R., Orrock J. L., Pascual J., Prober S. M., Pyke D. A., Risch A. C., Schuetz M., Smith M. D., Stevens C. J., Sullivan L. L., Williams R. J., Wragg P. D., Wright J. P., Yang L. H: 2014: Herbivores and nutrients control grassland plant diversity via light limitation. Nature 508: 517–520. https://doi.org/10.1038/nature13144
Chambers J. M., Freeny A. E., Heiberger R. M. 1992: Analysis of variance; designed experiments. In: Chambers J. M., Hastie T. J. (eds) Statistical Models in S. Routledge, New York, pp. 145–194.
Deák B., Tölgyesi Cs., Kelemen A., Bátori Z., Gallé R., Bragina T. M., Yerkin A. I. A., Valkó O. 2017: The effects of micro-habitats and grazing intensity on the vegetation of burial mounds in the Kazakh steppes. Plant Ecology & Diversity 10(5–6): 509–520. https://doi.org/10.1080/17550874.2018.1430871
Erdős L., Cserhalmi D., Bátori Z., Kiss T., Morschhauser T., Benyhe B., Dénes A. 2013: Shrub encroachment in a wooded-steppe mosaic: combining GIS methods with landscape historical analysis. Applied Ecology and Environmental Research 11(3): 371–384.
Evans R. 1977: Overgrazing and soil erosion on hill pastures with particular reference to the Peak District. Grass and Forage Science 32(2): 65–76. http://doi.org/10.1111/j.1365-2494.1977.tb01415.x
Fernandez-Gimenez M. E., Le Febre S. 2006: Mobility in pastoral systems: Dynamic flux or downward trend? International Journal of Sustainable Development & World Ecology 13(5): 341–362. http://doi.org/10.1080/13504500609469685
Gaitán J. J., Bran D. E., Oliva G. E., Aguiar M. R., Buono G. G., Ferrante D., Nakamatsu V., Ciari G., Salomone J. M., Massara V., Martínez G. G., Maestre F. T. 2018: Aridity and overgrazing have convergent effects on ecosystem structure and functioning in Patagonian rangelands. Land Degradation & Development 29(2): 210–218. https://doi.org/10.1002/ldr.2694
Gang C., Zhou W., Chen Y., Wang Z., Sun Z., Li J., Qi J., Odeh I. 2014: Quantitative assessment of the contributions of climate change and human activities on global grassland degradation. Environmental Earth Science 72(11): 4273–4282. http://doi.org/10.1007/s12665-014-3322-6
Gibbs H. K., Salmon J. M. 2015: Mapping the world’s degraded lands. Applied Geography 57: 12–21. https://doi.org/10.1016/j.apgeog.2014.11.024
Harris R. B. 2010: Rangeland degradation on the Qinghai-Tibetan plateau: A review of the evidence of its magnitude and causes. Journal of Arid Environments 74(1): 1–12. http://doi.org/10.1016/j.jaridenv.2009.06.014
Hortobágyi T., Simon T. 2000: Növényföldrajz, társulástan és ökológia. Nemzeti Tankönyvkiadó, Budapest, 538 pp.
Hutcheson K. 1970: A test for comparing diversities based on the Shannon formula. Journal of Theoretical Biology 29(1): 151–154. https://doi.org/10.1016/0022-5193(70)90124-4
Isselstein J., Jeangros B., Pavlu V. 2005: Agronomic aspects of biodiversity targeted management of temperate grasslands in Europe – A review. Agronomy Research 3(2): 139–151.
Jiang A., Jing L.-H., Mipam T.-D., Tian L.-M. 2023: Progress in research on the effects of grazing on grassland litter decomposition. Acta Prataculturae Sinica 32(4): 208–220. https://doi.org/10.11686/cyxb2022160
Kamp J., Koshkin M. A., Bragina T. M., Katzner T. E., Milner-Gulland E. J., Schreiber D., Sheldon R., Shmalenko A., Smelansky I., Terraube J., Urazaliev R. 2016: Persistent and novel threats to the biodiversity of Kazakhstan’s steppes and semi-deserts. Biodiversity and Conservation 25: 2521–2541. https://doi.org/10.1007/s10531-016-1083-0
Király G. (szerk.) 2009: Új magyar füvészkönyv. Magyarország hajtásos növényei. Határozókulcsok. Aggteleki Nemzeti Park Igazgatóság, Jósvafő, 616 pp.
Kovacsics-Vári G., Sonkoly J., Tóth K., McIntosh-Buday A., Díaz Cando P. E., Törő-Szijgyártó V., Balogh N., Guallichico Suntaxi L. R., Espinoza Ami F. D., Matus G., Tóthmérész B., Török P. 2024: High species richness of sheep-grazed sand pastures is driven by disturbance tolerant and weedy short-lived species. Ecology and Evolution 14(9): e70282. https://doi.org/10.1002/ece3.70282
Kovácsné Koncz N., Béri B., Deák B., Kelemen A., Tóth K., Kiss R., Radócz Sz., Miglécz T., Tóthmérész B., Valkó O. 2020: Meat production and maintaining biodiversity: Grazing by traditional breeds and crossbred beef cattle breeds in marshes and grasslands. Applied Vegetation Science 23(2): 139–148. http://doi.org/10.1111/avsc.12475
Lark T. J., Spawn S. A., Bougie M., Gibbs H. K. 2020: Cropland expansion in the United States produces marginal yields at high costs to wildlife. Nature Communications 11: 4295. https://doi.org/10.1038/s41467-020-18045-z
Li X.-L., Gao J., Brierley G., Qiao Y.-M., Zhang J., Yang Y.-W. 2013: Rangeland degradation on the Qinghai-Tibet plateau: implications for rehabilitation. Land Degradation & Development 24(1): 72–80. https://doi.org/10.1002/ldr.1108
Lin L., Li Y. K., Xu X. L., Zhang F. W., Du Y. G., Liu S. L., Guo X. W., Cao G. M. 2015: Predicting parameters of degradation succession processes of Tibetan Kobresia grasslands. Solid Earth 6(4): 1237–1246. https://doi.org/10.5194/se-6-1237-2015
Liu M., Dries L., Heijman W., Zhu X., Deng X., Huang J. 2019: Land tenure reform and grassland degradation in Inner Mongolia, China. China Economic Review 55: 181–198. https://doi.org/10.1016/j.chieco.2019.04.006
Lu X., Kelsey K. C., Yan Y., Sun J., Wang X., Cheng G., Neff J. C. 2017: Effects of grazing on ecosystem structure and function of alpine grasslands in Qinghai–Tibetan Plateau: a synthesis. Ecosphere 8(1): e01656. https://doi.org/10.1002/ecs2.1656
Ma L., Yao Z., Zheng X., Zhang H., Wang K., Zhu B., Wang R., Zhang W., Liu C. 2018: Increasing grassland degradation stimulates the non-growing season CO2 emissions from an alpine meadow on the Qinghai–Tibetan Plateau. Environmental Science and Pollution Research 25: 26576–26591. https://doi.org/10.1007/s11356-018-2724-5
Mor-Mussery A., Abu-Glaion H., Shuker S., Zaady E. 2020: The influence of trampling by small ruminants on soil fertility in semi-arid rangelands. Arid Land Research and Management 35(2): 189–197. https://doi.org/10.1080/15324982.2020.1827083
Nagy G. 2001: A gyephasználat és vidékfejlesztés összefüggései. In: Nagy G., Pető K., Vinczeffy I. (szerk.) Gyepgazdálkodásunk helyzete és kilátásai: többirányú gyephasználat szaktanácsadási alapjai III. Debreceni Gyepgazdálkodási Napok 17. Debreceni Egyetem Agrártudományi Centrum, Debrecen. pp. 22–31.
Perevolotsky A., Seligman N. G. 1998: Role of grazing in Mediterranean rangeland ecosystems: Inversion of a paradigm. BioScience 48(12): 1007–1017. https://doi.org/10.2307/1313457
Salinas H., Ramirez-Delgado D. 2021: ecolTest: community ecology tests. R package version 0.0.1 https://cran.r-project.org/web/packages/ecolTest/index.html
Sanderson M. A., Archer D., Hendrickson J., Kronberg S., Liebig M., Nichols K., Schmer M., Tanaka D., Aguilar J. 2013: Diversification and ecosystem services for conservation agriculture: Outcomes from pastures and integrated crop–livestock systems. Renewable Agriculture and Food Systems 28(2): 129–144. https://doi.org/10.1017/S1742170512000312
Sauer J. R., Link W. A., Fallon J. E., Pardieck K. L., Ziolkowski Jr. D. J. 2013: The North American breeding bird survey 1966–2011: summary analysis and species accounts. North American Fauna 79: 1–32.
Seto K. C., Fragkias M., Güneralp B., Reilly M. K. 2011: A meta-analysis of global urban land expansion. PLoS One 6(8): e23777. http://doi.org/10.1371/journal.pone.0023777
Shahriary E., Langford R. P., Gill T. E., Hussein M., Hargrove W. L., Golding P. 2021: Partitioning variation in vegetation communities around Lajaneh Piosphere, Iran. Arid Land Research and Management 35(1): 32–54. https://doi.org/10.1080/15324982.2020.1783025
Siyabulela S., Tefera S., Wakindiki I., Keletso M. 2020: Comparison of grass and soil conditions around water points in different land use systems in semi-arid South African rangelands and implications for management and current rangeland paradigms. Arid Land Research and Management 34(2): 207–230. https://doi.org/10.1080/15324982.2019.1670279
Szentes Sz., Sutyinszki Zs., Szabó G., Zimmermann Z., Házi J., Wichmann B., Hufnágel L., Penksza K., Bartha S. 2012: Grazed Pannonian grassland beta-diversity changes due to C4 yellow bluestem. Central European Journal of Biology 7(6): 1055–1065. https://doi.org/10.2478/s11535-012-0101-9
Szombati D., Tasi J. 2007: Különböző gyephasznosítási módok hatása a növényállomány összetételére a hortobágyi vizes élőhelyrekonstrukciós programban. Animal welfare, etológia és tartás technológia 3(1): 70–101.
Tasi J., Bajnok M., Halász A., Szabó F., Harkányiné Székely Zs., Láng V. 2014: Magyarországi komplex gyepgazdálkodási adatbázis létrehozásának első lépései és eredményei. Gyepgazdálkodási Közlemények 12(1–2): 57–64. https://doi.org/10.55725/gygk/2014/12/1-2/9770
Tiscornia G., Jaurena M., Baethgen W. 2019: Drivers, process, and consequences of native grassland degradation: insights from a literature review and a survey in Río de la Plata grasslands. Agronomy 9(5): 239. https://doi.org/10.3390/agronomy9050239
Török G., Bajnok M., Béres A., Harkányiné Székely Zs., Tasi J. 2013: Az időjárási tényezők és a hasznosítási rendszerek hatása a terméshozamra és a minőségre néhány pázsitfűfaj esetében. Gyepgazdálkodási Közlemények 11(1–2): 43–56.
Török P., Janišová M., Kuzemko A., Rūsiņa S., Stevanović Z. D. 2018a: Grasslands, their threats and management in Eastern Europe. In: Squires V. R., Dengler J., Hua L., Feng H. (eds) Grasslands of the World: Diversity, Management and Conservation. CRC Press, Florida, pp. 64–88.
Török P., Penksza K., Tóth E., Kelemen A., Sonkoly J., Tóthmérész B. 2018b: Vegetation type and grazing intensity jointly shape grazing effects on grassland biodiversity. Ecology and Evolution 8(20): 10326–10335. https://doi.org/10.1002/ece3.4508
Valkó O., Venn S., Żmihoski M., Biurrun I., Labadessa R., Loos J. 2018: The challenge of abandonment for the sustainable management of Palaearctic natural and semi-natural grasslands. Hacquetia 17(1): 5–16. https://doi.org/10.1515/hacq-2017-0018
Varga K., Csízi I. 2020: Túllegeltetett természetközeli gyeptársulás rekultivációja legeltetés kizárással. Gyepgazdálkodási Közlemények 18(1–2): 45–53.
Varga K., Csízi I. 2023a: A hasznosítási módok hatása az extenzív gyep növényállományának ökológiai szempontú nitrogénigény mutatóira. Növénytermelés 72(2): 127–143.
Varga K., Csízi I. 2023b: Degradációs fok alakulása különböző gyephasznosítási módok esetén. Gyepgazdálkodási Közlemények 21(1): 35–44. https://doi.org/10.55725/gygk/2023/21/1/12275
Varga K., Csízi I. 2023c: Különböző hasznosítási módú gyeptársulás növényállomány szerkezetének alakulása WB értékek szerint. Gyepgazdálkodási Közlemények 21(2): 59–64. https://doi.org/10.55725/gygk/2023/21/2/13642
Varga K., Csízi I., Bojté Cs. E. 2024a: Egérárpa, egy igazi veszélyforrás a juhlegelőkön. Magyar Juhászat és Kecsketenyésztés: A Magyar Mezőgazdaság Melléklete 33(6): 5.
Varga K., Csízi I., Halász A., Mezőszentgyörgyi D., Nagy D. 2024b: Monitoring the degradation of semi-natural grassland associations under different land-use patterns. Agronomy 14(1): 35. https://doi.org/10.3390/agronomy14010035
Veldman J. W., Buisson E., Durigan G., Fernandes G. W., Le Stradic S., Mahy G., Negreiros D., Overbeck G. E., Veldman R. G., Zaloumis N. P., Putz F. E., Bond W. J. 2015: Toward an old-growth concept for grasslands, savannas, and woodlands. Frontiers in Ecology and the Environment 13(3): 154–162. https://doi.org/10.1890/140270
Vetter S., Bond W. J. 2012: Changing predictors of spatial and temporal variability in stocking rates in a severely degraded communal rangeland. Land Degradation & Development 23(2): 190–199. https://doi.org/10.1002/ldr.1076
Vickery J. A., Tallowin J. R., Feber R. E., Asteraki E. J., Atkinson P. W., Fuller R. J., Brown V. K. 2001: The management of lowland neutral grasslands in Britain: effects of agricultural practices on birds and their food resources. Journal of Applied Ecology 38(3): 647–664. https://doi.org/10.1046/j.1365-2664.2001.00626.x
Wang Z., Deng X., Song W., Li Z., Chen J. 2017: What is the main cause of grassland degradation? A case study of grassland ecosystem service in the middle-south Inner Mongolia. Catena 150: 100–107. https://doi.org/10.1016/j.catena.2016.11.014
Wick A. F., Geaumont B. A., Sedivec K. K., Hendrickson J. R. 2016: Grassland degradation. In: Shroder J. F., Sivanpillai R. (eds) Biological and environmental hazards, risks and disasters. Elsevier, New York, Volume 8, pp. 257–276. https://doi.org/10.1016/B978-0-12-394847-2.00016-4
Wickham H. 2016: ggplot2: Elegant graphics for data analysis. Springer-Verlag, New York. https://ggplot2.tidyverse.org
Wilke C. O. 2019: cowplot: streamlined plot theme and plot annotations for “ggplot2”. R package version 1.1.2. CRAN: Contributed Packages. The R Foundation. https://doi.org/10.32614/cran.package.cowplot
Wilson J. B., Peet R. K., Dengler J., Pärtel M. 2012: Plant species richness: the world records. Journal of Vegetation Science 23(4): 796–802. https://doi.org/10.1111/j.1654-1103.2012.01400.x
Wright C. K., Wimberly M. C. 2013: Recent land use change in the Western Corn Belt threatens grasslands and wetlands. Proceedings of the National Academy of Sciences of the United States of America 110(10): 4134–4139. https://doi.org/10.1073/pnas.1215404110
Wu G.-L., Ren G.-H., Dong Q.-M., Shi J.-J., Wang Y.-L. 2014: Above- and belowground response along degradation gradient in an alpine grassland of the Qinghai-Tibetan Plateau. Clean Soil Air Water 42: 319–323. http://doi.org/10.1002/clen.201200084
Xie H., Zhang Y., Wu Z., Lv T. 2020: A bibliometric analysis on land degradation: Current status, development, and future directions. Land 9(1): 28. https://doi.org/10.3390/land9010028
Xie Y., Sha Z. 2012: Quantitative analysis of driving factors of grassland degradation: a case study in Xilin River Basin, Inner Mongolia. The Scientific World Journal 2012: 169724.
Zar J. H. 2010: Biostatistical Analysis. 5th ed. Pearson Prentice Hall, Upper Saddle River. 944 pp.
Zhang W., Xue X., Peng F., You Q., Hao A. 2019: Meta-analysis of the effects of grassland degradation on plant and soil properties in the alpine meadows of the Qinghai-Tibetan Plateau. Global Ecology and Conservation 20: e00774. https://doi.org/10.1016/j.gecco.2019.e00774
Zhang Y., Ganjurjav H., Dong S., Gao Q. 2020: Excessive plant compensatory growth: a potential endogenous driver of meadow degradation on the Qinghai-Tibetan Plateau. Ecosystem Health and Sustainability 6(1): 1816500. https://doi.org/10.1080/20964129.2020.1816500
Zhao Y., Peth S., Krümmelbein J., Horn R., Wang Z., Steffens M., Hoffmann C., Peng X. 2007: Spatial variability of soil properties affected by grazing intensity in Inner Mongolia grassland. Ecological Modelling 205(1–2): 241–254. http://doi.org/10.1016/j.ecolmodel.2007.02.019
Zhou H., Yang X., Zhou C., Shao X., Shi Z., Li H., Su H., Qin R., Chang T., Hu X., Yuan F., Li S., Zhang Z., Ma L. 2023: Alpine grassland degradation and its restoration in the Qinghai–Tibet Plateau. Grasses 2(1): 31–46. https://doi.org/10.3390/grasses2010004
Zhou T., Hou G., Sun J., Zong N., Shi P. 2021: Degradation shifts plant communities from S- to R-strategy in an alpine meadow, Tibetan Plateau. Science of The Total Environment 800: 149572. https://doi.org/10.1016/j.scitotenv.2021.149572
Zhou W., Gang C., Zhou L., Chen Y., Li J., Ju W., Odeh I. 2014: Dynamic of grassland vegetation degradation and its quantitative assessment in the northwest China. Acta Oecologica 55: 86–96. https://doi.org/10.1016/j.actao.2013.12.006