Change of morphometric and allometric patterns on wings of banded demoiselle (Calopteryx splendens) males in case of ecologically different watercourse types

Keywords: dragonfly, allometry, wing traits, watercourse and ecological types, North-East Hungary

Abstract

In the nature, larvae living in watercourses are exposed to a complex system of environmental influences. It is known that different watercourse types (creeks, brooks, streams, little rivers and medial rivers) provide different conditions for larval development (water depth, flow rate, temperature, oxygen content, substrate type, nutrient supply, etc.). These conditions can vary significantly between watercourse types, but be very similar within types. In this work, we examined the body sizes and wing morphometric characteristics of males of Calopteryx splendens reared from different watercourse types (brook, stream, creek, little river, medial river). Although there were no significant differences in body size among watercourse types, we found significant differences in the wing features. We found the most differences between the individuals reared from streams and creeks and between the individuals reared from stream and medial river. Our results show that the individuals reared from different watercourse types were clearly separated on the two wings. The results also suggest that there are significant differences in the number and pattern of allometric features on the wings of individuals reared from different watercourse types.

References

Ambühl, H. (1959): Die Bedeutung der Strömung als ökologischer Faktor. – Schweizerische Zeitschrift für Hydrologie 21(2): 133–264. https://doi.org/10.1007/BF02505455

Battán Horenstein, M. & Peretti, A. V. (2011): Environmental conditions influence allometric patterns in the blow fly, Chrysomya albiceps. – Journal of Insect Science (Online) 11(131): 1–10. https://doi.org/10.1673/031.011.13101

Bernáth, B., Szedenics, G., Wildermuth, H. & Horváth, G. (2002): How can dragonflies discern bright and dark waters from a distance? The degree of polarisation of reflected light as a possible cue for dragonfly habitat selection. – Freshwater Biology 47: 1707–1719. https://doi.org/10.1046/j.1365-2427.2002.00931.x

Blomqvist, D., Johansson, O. C., Unger, U. N. O., Larsson, M. & Flodin, L.-Å. (1997): Male aerial display and reversed sexual size dimorphism in the dunlin. – Animal Behaviour 54(5): 1291–1299. https://doi.org/10.1006/anbe.1997.0532

Bonduriansky, R. (2007): Sexual selection and allometry: a critical reappraisal of evidence and ideas. – Evolution 61(4): 838–849. https://doi.org/10.1111/j.1558-5646.2007.00081.x

Campbell, I. C. (1991): Size allometry in some Australian mayfly nymphs (Insecta: Ephemeroptera). – Aquatic Insects 13(2): 79–86. https://doi.org/10.1080/01650429109361427

Chaput-Bardy, A., Gregoire, A., Baguette, M., Pagano, A. & Secondi, J. (2010): Condition and phenotype-dependent dispersal in a damselfly, Calopteryx splendens. – PLoS ONE 5(5): e10694. https://doi.org/10.1371/journal.pone.0010694

Corbet, P. S. (1999): Dragonflies: behavior and ecology of Odonata. – Harley, Colchester, 829 pp.

Crowley, P. H. & Hopper, K. R. (1994): How to behave around cannibals: a density-dependent dynamic game. – The American Naturalist 143(1): 117–154. https://doi.org/10.1086/285598

D’Amico, F., Darblade, S., Avignon, S., Blanc-Manel, S. & Ormerod, S. (2004): Odonates as indicators of shallow lake restoration by liming: comparing adult and larval responses. – Restoration Ecology 12: 439–446. https://doi.org/10.1111/j.1061-2971.2004.00319.x

Dévai, Gy. (1976): Proposal for the classification of inland (continental) waters. – Acta Biologica Debrecina 13: 147–161.

Dévai, Gy., Nagy, S., Wittner, I., Aradi, C., Csabai, Z. & Tóth, A. (2001): Specific features and typology of aquatic and semiaquatic biotopes. Pp. 11–74. In: Böhm, A. & Szabó, M. (eds): Wetlands: interface between natural and social environment. – ELTE–TTK, SZIE–KGI & KöM–TvH, Budapest.

Dmitriew, C., Cooray, M. & Rowe, L. (2007): Effects of early resource-limiting conditions on patterns of growth, growth efficiency, and immune function at emergence in a damselfly (Odonata: Coenagrionidae). – Canadian Journal of Zoology 85(3): 310–318. https://doi.org/10.1139/z07-004

Dubois, E. (1897): Sur le rapport de l’encephale avec la grandeur du corps chez les Mammiferes. – Bulletin of Social Anthropology 8: 337–374. https://doi.org/10.3406/bmsap.1897.5705

Dumont, H. J. (1991): Odonata of the Levant. – Israel Academy of Sciences and Humanities, Jerusalem, VIII + 304 pp.

Gallesi, M. M., Mobili, S., Cigognini, R., Hardersen, S. & Sacchi, R. (2016): Season matters: differential variation of wing shape between sexes of Calopteryx splendens (Odonata: Calopterygidae). – Zoomorphology 135(3): 313–322. https://doi.org/10.1007/s00435-016-0309-8

Gibbons, D. W. & Pain, D. (1992): The influence of river flow rate on the breeding behaviour of Calopteryx damselflies. – Journal of Animal Ecology 61(2): 283–289. https://doi.org/10.2307/5321

Goodyear, K. G. (2000): A comparison of the environmental requirements of larvae of the Banded Demoiselle Calopteryx splendens (Harris) and the Beautiful Demoiselle C. virgo (L.). – Journal of the British Dragonfly Society 16(2): 33–51.

Hammer, Ø., Harper, D. A. T. & Ryan, P. D. (2001): Paleontological statistics software package for education and data analysis. – Paleontologia Electronica 4(1): 1–9.

Hardersen, S. (2010): Seasonal variation of wing spot allometry in Calopteryx splendens (Odonata Calopterygidae). – Ethology Ecology & Evolution 22(4): 365–373. https://doi.org/10.1080/03949370.2010.510042

Hassall, C. & Thompson, D. (2008): The impacts of environmental warming on Odonata: a review. – International Journal of Odonatology 11(2): 131–153. https://doi.org/10.1080/13887890.2008.9748319

Hedenström, A. & Rosén, M. (2001): Predator versus prey: on aerial hunting and escape strategies in birds. – Behavioral Ecology 12(2): 150–156. https://doi.org/10.1093/beheco/12.2.150

Horenstein, M. B., Linhares, A. X., De Ferradas, B. R. & García, D. (2010): Decomposition and dipteran succession in pig carrion in central Argentina: ecological aspects and their importance in forensic science. – Medical and Veterinary Entomology 24(1): 16–25. https://doi.org/10.1111/j.1365-2915.2009.00854.x

Huxley, J. S. (1924): Constant differential growth-ratios and their significance. – Nature 114: 895–896. https://doi.org/10.1038/114895a0

Jajuga, K. & Walesiak, M. (2000): Standardisation of data set under different measurement scales. Pp. 105–112. In: Decker, R. & Gaul, W. (eds): Classification and information processing at the turn of the Millennium. – Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57280-7_11

Klingenberg, C. P. & Zimmermann, M. (1992): Static, ontogenetic, and evolutionary allometry: a multivariate comparison in nine species of water striders. – The American Naturalist 140(4): 601–620. https://doi.org/10.1086/285430

Lajter, I., Móra, A., Grigorszki, I., Nagy, S. & Dévai, Gy. (2010): Characterisation of the Hungarian section of River Tisza and its major tributaries near their confluences to the mainstream on the basis of aquatic macroinvertebrate communities. – Studia Odonatologica Hungarica Supplementum 1: 9–122.

Marden, J. H. (1989): Bodybuilding dragonflies: costs and benefits of maximising flight muscle. – Physiological Zoology 62(2): 505–521. https://doi.org/10.1086/physzool.62.2.30156182

McKie, B. G. & Cranston, P. S. (2005): Size matters: systematic and ecological implications of allometry in the responses of chironomid midge morphological ratios to experimental temperature manipulations. – Canadian Journal of Zoology 83(4): 553–568. https://doi.org/10.1139/z05-051

McLelland, S. J., Ashworth, P. J. & Best, J. L. (1996): The origin and downstream development of coherent flow structures at channel junctions. Pp. 459–490. In: Ashworth, P. J., Best, J. L. & McLelland, S. J. (eds): Coherent flow structures in open channels. – John Wiley and Sons Ltd., Hoboken.

Mertens, J., De Coster, W., De Meyer, H. & Dumont, H. J. (1992): A method for the quantitative analysis of wing spot applied to two populations of Calopteryx splendens (Harris) (Zygoptera: Calopterygidae). – Odonatologica 21(4): 443–451.

Mikolajewski, D. J., Brodin, T., Johansson, F. & Joop, G. (2005): Phenotypic plasticity in gender specific life-history: effects of food availability and predation. – Oikos 110(1): 91–100. https://doi.org/10.1111/j.0030-1299.2005.13766.x

Minot, M., Le Gall, M. & Huste, A. (2019): Biometry of the large dragonfly Anax imperator (Odonata: Aeshnidae): A study of traits from larval development to adults. – European Journal of Entomology 116(1): 269–280. https://doi.org/10.14411/eje.2019.031

Naiman, R. J., Bilby, R. E., Schindler, D. E. & Helfield, J. M. (2002): Pacific salmon, nutrients, and the dynamics of freshwater and riparian ecosystems. – Ecosystems 5(4): 399–417. https://doi.org/10.1007/s10021-001-0083-3

Outomuro, D., Bokma, F. & Johansson, F. (2012): Hind wing shape evolves faster than front wing shape in Calopteryx damselflies. – Evolutionary Biology 39(1): 116–125. https://doi.org/10.1007/s11692-011-9145-4

Outomuro, D. & Cordero-Rivera, A. (2012): Allometry of secondary, primary, and nonsexual traits in the beautiful demoiselle (Calopteryx virgo meridionalis). – Canadian Journal of Zoology 90(9): 1094–1101. https://doi.org/10.1139/z2012-076

Outomuro, D., Cordero Rivera, A., Nava-Bolaños, A. & Córdoba-Aguilar, A. (2014): Does allometry of a sexually selected ornamental trait vary with sexual selection intensity? A multi-species test in damselflies. – Ecological Entomology 39(3): 399–403. https://doi.org/10.1111/een.12098

Outomuro, D., Dijkstra, K. D. & Johansson, F. (2013): Habitat variation and wing coloration affect wing shape evolution in dragonflies. – Journal of Evolutionary Biology 26(9): 1866–1874. https://doi.org/10.1111/jeb.12203

Palmer, A. R. & Strobeck, C. (1992): Fluctuating asymmetry as a measure of developmental stability: Implications of non-normal distributions and power of statistical tests. – Acta Zoologica Fennica 191: 57–72.

Petts, G. E. (2000): A perspective on the abiotic processes sustaining the ecological integrity of running waters. – Hydrobiologia 2: 15–27. https://doi.org/10.1023/A:1017062032685

Plaistow, S. & Siva-Jothy, M. T. (1999): The ontogenetic switch between odonate life history stages: effects on fitness when time and food are limited. – Animal Behaviour 58(3): 659–667. https://doi.org/10.1006/anbe.1999.1171

R Core Team (2018): R: A language and environment for statistical computing. – R Foundation for Statistical Computing, Vienna.

Roff, D. A. (1990): The evolution of flightlessness in insects. – Ecological Monographs 60(4): 389–421. https://doi.org/10.2307/1943013

Rüppell, G., Hilfert-Rüppell, D., Rehfeldt, G. & Schütte, C. (2005): Die Prachtlibellen Europas. Gattung Calopteryx. Die Neue Brehm-Bücherei Bd. 654. – Westarp Wissenschaften-Verlagsgesellschaft GmbH, Hohenwarsleben.

Sacchi, R. & Hardersen, S. (2012): Wing length allometry in Odonata: differences between families in relation to migratory behaviour. – Zoomorphology 132(1): 23–32. https://doi.org/10.1007/s00435-012-0172-1

Sadeghi, S., Adriaens, D. & Dumont, H. J. (2009): Geometric morphometric analysis of wing shape variation in ten European populations of Calopterys splendens (Harris, 1782) (Zygoptera: Calopterygidae). – Odonatologica 38(4): 341–357.

Schlichting, C. & Pigliucci, M. (1998): Phenotypic evolution: A reaction norm perspective. – Sinauer Associates Inc, Sunderland, Massachusetts, 387 pp.

Shea, B. T. (1985): Bivariate and multivariate growth allometry: statistical and biological considerations. – Journal of Zoology 206(3): 367–390. https://doi.org/10.1111/j.1469-7998.1985.tb05665.x

Shingleton, A. W., Frankino, W. A., Flatt, T., Nijhout, H. F. & Emlen, D. J. (2007): Size and shape: the developmental regulation of static allometry in insects. – Bioessays 29(6): 536–48. https://doi.org/10.1002/bies.20584

Siva-Jothy, M. T., Gibbons, D. & Pain, D. (1995): Female oviposition-site preference and egg hatching success in the damselfly Calopteryx splendens xanthostoma. – Behavioral Ecology and Sociobiology 37: 39–44. https://doi.org/10.1007/BF00173897

Soto, I. M., Carreira, V. P., Soto, E. M. & Hasson, E. (2008): Wing morphology and fluctuating asymmetry depend on the host plant in cactophilic Drosophila. – Journal of Evolutionary Biology 21(2): 598–609. https://doi.org/10.1111/j.1420-9101.2007.01474.x

Stern, D. L. & Emlen, D. J. (1999): The developmental basis for allometry in insects. – Development 126(6): 1091–1101. https://doi.org/10.1242/dev.126.6.1091

Stettmer, C. (1996): Colonisation and dispersal patterns of banded (Calopteryx splendens) and beautiful demoiselles (C. virgo) in south-east German streams. – European Journal of Entomology 93: 579–593.

Stewart, S. & Vodopich, D. (2018): Environmental effects on wing shape and wing size of Argia sedula (Odonata: Coenagrionidae). – International Journal of Odonatology 21: 1–15. https://doi.org/10.1080/13887890.2018.1523752

Stewart, T. W. & Downing, J. A. (2008): Macroinvertebrate communities and environmental conditions in recently constructed wetlands. – Wetlands 28(1): 141–150. https://doi.org/10.1672/06-130.1

Svensson, E. I. & Friberg, M. (2007): Selective predation on wing morphology in sympatric damselflies. – The American Naturalist 170(1): 101–112. https://doi.org/10.1086/518181

Svensson, E. I., Kristoffersen, L., Oskarsson, K. & Bensch, S. (2004): Molecular population divergence and sexual selection on morphology in the banded demoiselle (Calopteryx splendens). – Heredity 93(5): 423–433. https://doi.org/10.1038/sj.hdy.6800519

Taylor, P. D. & Merriam, G. (1995): Wing morphology of a forest damselfly is related to landscape structure. – Oikos 73(1): 43–48. https://doi.org/10.2307/3545723

Teder, T., Tammaru, T. & Esperk, T. (2008): Dependence of phenotypic variance in body size on environmental quality. – The American Naturalist 172(2): 223–232. https://doi.org/10.1086/589896

Thompson, J. N. (1998): Rapid evolution as an ecological process. – Trends in Ecology & Evolution 13(8): 329–332. https://doi.org/10.1016/S0169-5347(98)01378-0

Van Buskirk, J. (1989): Density-dependent cannibalism in larval dragonflies. – Ecology 70(5): 1442–1449. https://doi.org/10.2307/1938203

Ward, L. & Mill, P. (2007): Long range movements by individuals as a vehicle for range expansion in Calopteryx splendens (Odonata: Zygoptera). – European Journal of Entomology 104(2): 195–198. https://doi.org/10.14411/eje.2007.030

Ward, L. & Mill, P. J. (2005): Habitat factors influencing the presence of adult Calopteryx splendens (Odonata: Zygoptera). – European Journal of Entomology 102(1): 47–51. ­https://doi.org/10.14411/eje.2005.007

Warton, D. I., Duursma, R. A., Falster, D. S. & Taskinen, S. (2012): smatr 3 – an R package for estimation and inference about allometric lines. – Methods in Ecology and Evolution 3(2): 257–259. https://doi.org/10.1111/j.2041-210X.2011.00153.x

Warton, D. I., Wright, I. J., Falster, D. S. & Westoby, M. (2006): Bivariate line-fitting methods for allometry. – Biological Reviews 81(2): 259–291. https://doi.org/10.1017/S1464793106007007

Williams, C. M. (1980): Growth in insects. Pp. 369–383. In: Locke, M. (ed.): Insect biology in the future. – Academic Press, London. https://doi.org/10.1016/B978-0-12-454340-9.50022-7

Zahner, R. (1959): Über die Bindung der mitteleuropäischen Calopteryx-Arten (Odonata, Zygoptera) an den Lebensraum des strömenden Wassers. – Internationale Revue der gesamten Hydrobiologie und Hydrographie 44(1–4): 51–130. https://doi.org/10.1002/iroh.19590440105

Published
2022-02-14
How to Cite
SzabóL. J., VajdaC., SzalayP. Éva, KisO., MiskolcziM., & DévaiG. (2022). Change of morphometric and allometric patterns on wings of banded demoiselle (Calopteryx splendens) males in case of ecologically different watercourse types. Acta Zoologica Academiae Scientiarum Hungaricae, 68(1), 99-118. https://doi.org/10.17109/AZH.68.1.99.2022