Deployment of Industrial Robotic Turbocharger Manipulator into the Production Process – Construction of a Crate Feeder Workstation

  • Miroslav Blatnicky
  • Jan Dizo Department of Transport and Handling Machines, University of Žilina Žilina, Slovak Republic https://orcid.org/0000-0001-9433-392X
  • Alyona Lovska Department of Transport and Handling Machines, University of Žilina Žilina, Slovak Republic https://orcid.org/0000-0002-8604-1764
  • Ivana Domaniková Department of Transport and Handling Machines, University of Žilina Žilina, Slovak Republic
  • Patrik Slušňák Department of Transport and Handling Machines, University of Žilina Žilina, Slovak Republic
Keywords: motion, turbocharger, automation, robotic workplace, structural design

Abstract

An industrial enterprise can remain competitive only if its production process is continually made more efficient. An analysis of operators' workload in a real-world operation involving balancing turbochargers for internal combustion engines has shown that cyclically repetitive and strenuous human work can be optimised through automated processes. For this reason, there is room for applied research, resulting in the machine's ability to reproduce only the necessary manipulation activities required in the turbocharger balancing process. Therefore, the proposed automatic line includes balancing machines to determine the amount and location of unbalanced masses on the turbocharger rotor. Following the overall resolution of the issue, a significant increase in the efficiency of a technologically feasible workplace, adapted to the needs of modern industry, is expected.

References

Al Rashid, J., Koohestani, M., Saintis, L., Barreau, M. (2024). Lifetime reliability modeling on EMC performance of digital ICs influenced by the environmental and aging constraints: A case study. Microelectronics Reliability. 159, 115447. DOI: https://doi.org/10.1016/j.microrel.2024.115447

Daily Automation (2025). Delta Robot Workplace. URL: https://www.dailyautomation.sk/wp-content/uploads/2016/05/Delta-robot_Workspace.png (Downloaded 20 August 2025 14:05)

Eller, B., Majid, M. R., Fischer, S. (2022). Laboratory tests and FE modeling of the Concrete Canvas, for infrastructure applications. Acta Polytechnica Hungarica. 19(3), 9–20. DOI: https://doi.org/10.12700/APH.19.3.2022.3.2

Engineering (2025). 5 základných vecí, ktoré by mal inžinier robotiky vedieť o priemyselných robotoch [5 essential things a robotics engineer should know about industrial robots]. Engineering. URL: https://www.engineering.sk/clanky2/automatizacia-robotizacia/30455-5-zakladnych-veci-ktore-by-mal-inzinier-robotiky-vediet-o-priemyselnych-robotoch (Downloaded 27 August 2025 09:18)

Festo (2018). Všechno elektricky! [Everything electric]. ElektroPrůmysl. URL: http://www.elektroprumysl.cz/automatizace/vsechno-elektricky (Downloaded: 27 August 2025 18:48)

Hussen, A. M. (2013). Principles of Environmental Economics and Sustainability. 3rd ed. Routledge, New York, NY.

ISO 21940-2:2017 (2017). Mechanical vibration – Rotor balancing. Part 2: Vocabulary. International Organization for Standardization. Geneva, Switzerland. URL: https://www.iso.org/standard/68131.html

ISO 8373:2021 (2021). Robotics – Vocabulary. International Organization for Standardization. Geneva, Switzerland. URL: https://www.iso.org/obp/ui/#iso:std:iso:8373:ed-3:v1:en

Kirtley, J. L. (2005). Analytic Design Evaluation of Induction Machines. In: Kirtley, J. L. (ed.). Introduction to Power Systems, 1st ed. Massachusetts Institute of Technology, Massachusetts, USA. 1–42. URL: https://web.mit.edu/6.685/www/chapter8.pdf

Kumar, S., Raj, K. K., Cirrincione, M., Cirrincione, G., Franzitta, V., Rahul, R. K. (2024). A comprehensive review of remaining useful life estimation approaches for rotating machinery. Energies. 17(22), 5538. DOI: https://doi.org/10.3390/en17225538

Lifetime Reliability Solutions (2025). Rotating Machinery Rotor Balancing. URL: https://rotorlab.tamu.edu/me459/Rotor%20Balancing/Rotating_Machinery_Rotor_Balancing.pdf (Downloaded 28 July 2025 08:15)

Machine Design (2025). Differences Between Robots and Cobots. URL: https://base.imgix.net/files/base/ebm/machinedesign/image/2016/12/machinedesign_com_sites_machinedesign.com_files_uploads_2016_10_12_1216_MD_DiffBetw_Robots_F6.png (Downloaded 28 August 2025 19:32)

Mitsubishi Electric (2025). Mitsubishi Electric Industrial Robot Melfa FR Series. URL: https://us.mitsubishielectric.com/fa/en/support/technical-support/knowledge-base/getdocument/?docid=3E26SJWH3ZZR-610492034-15485 (Downloaded 13 August 2025 14:32)

Norfield, D. (2006). Practical Balancing of Rotating Machinery. Elsevier, Amsterdam. URL: https://archive.org/details/PracticalBalancingOfRotatingMachineryDerekNorfield

Šavrnoch, Z., Sapieta, M., Dekýš, M., Ferfecki, P., Zapoměl, J., Sapietová, A., Molčan, M., Fusek, M. (2024). Probabilistic analysis of critical speed values of a rotating machine as a function of the change of dynamic parameters. Sensors. 24(13), 4349. DOI: https://doi.org/10.3390/s24134349

Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G. (2010). Robotics: Modelling, Planning and Control, 1st ed. Springer-Verlag, London, UK. URL: https://nibmehub.com/opac-service/pdf/read/Robotics%20Modelling-%20Planning%20and%20Control%20by%20Bruno%20Siciliano-.pdf

Zaharia, S. M. (2019). The methodology of fatigue lifetime prediction and validation based on accelerated reliability testing of the rotor pitch links. Eksploatacja i Niezawodnosc – Maintenance and Reliability.21(4), 638–644. DOI: https://doi.org/10.17531/ein.2019.4.13

Published
2025-09-28
How to Cite
BlatnickyM., DizoJ., LovskaA., DomanikováI., & SlušňákP. (2025). Deployment of Industrial Robotic Turbocharger Manipulator into the Production Process – Construction of a Crate Feeder Workstation. Cognitive Sustainability, 4(3). https://doi.org/10.55343/CogSust.20526
Section
Research articles