Waste-based fuels as part of sustainable mobility
Abstract
The transition to sustainable energy systems necessitates innovative waste management and fuel production approaches. This study provides a comprehensive overview of waste-based fuels, emphasising their role in promoting circular economy principles and reducing environmental burdens. Various waste streams, including agricultural residues, sewage sludge, food waste, plastic waste, and end-of-life tyres, are examined for their potential to be converted into valuable energy carriers, such as biofuels, syngas, biogas, and fuel oils. The review synthesises findings from recent literature, highlighting thermochemical (e.g., pyrolysis, gasification) and biochemical (e.g., anaerobic digestion) conversion technologies. Key insights include the feasibility of integrating waste-derived fuels into existing combustion systems, the potential for emission reduction, and the ongoing economic and technological challenges. The concept of biorefineries is identified as a promising strategy for maximising resource efficiency and economic viability. The study concludes with a call for further research, particularly life cycle assessments (LCA), to evaluate these technologies' environmental and economic impacts. Based on the literature analysis, it can be concluded that waste-derived fuels can be used in existing internal combustion engines; however, further optimisation may be necessary. Moreover, there is great potential in converting waste into useful energy; however, further research is needed to develop these methods.
References
Bera, P. (2025) Körforgásos gazdaságfejlesztés gazdasági és társadalmi feltételei [védés előtt]. Doktori (PhD) értekezés, Budapesti Corvinus Egyetem, Gazdálkodástani Doktori Iskola. URL: https://phd.lib.uni-corvinus.hu/1442/
Bourguignon, D. (2016) Closing the loop, New circular economy package EPRS | European Parliamentary Research Service, Members’ Research Service, PE 573.899. URL: https://www.europarl.europa.eu/RegData/etudes/BRIE/2016/573899/EPRS_BRI%282016%29573899_EN.pdf
Colelli, L., Dell’Aversano, S., Bassano, C., Vanga, G., Gallucci, K., & Vilardi, G. (2026). Liquid e-fuels for a sustainable future: A comprehensive review of production, regulation, and technological innovation. Energy Conversion and Management, 347, 120529. DOI: https://doi.org/10.1016/j.enconman.2025.120529
Emőd, I., Füle, M., Tánczos, K., Zöldy, M. (2005). A bioetanol magyarországi bevezetésének műszaki, gazdasági és környezetvédelmi feltételei. Magyar Tudomány. 50, 278–286. URL: https://epa.oszk.hu/00600/00691/00015/03.html
Goshe, E. K., Gebremedhine, M. G., Hailu, A. M., & Negie, Z. W. (2025). Anaerobic Co-Digestion of Brewery Wastewater and Soybean Processing Industry Sludge to Enhance Biogas Production. Scientific African, e02986. DOI: https://doi.org/10.1016/j.sciaf.2025.e02986
Kondor, I. P., Zöldy, M., Mihály, D. (2021). Experimental Investigation on the Performance and Emission Characteristics of a Compression Ignition Engine Using Waste-Based Tire Pyrolysis Fuel and Diesel Fuel Blends. Energies. 14(23), 7903. DOI: https://doi.org/10.3390/en14237903
Kondor, P. I., Zöldy, M. (2020). Égésszimulációs vizsgálatok hulladékalapú tüzelőanyagok alkalmazásánál: Combustion simulation investigations using waste-based fuels. Nemzetközi Gépészeti Konferencia–OGÉT, 223–226. URL: https://ojs.emt.ro/oget/article/view/167
Kosztyo, Á., Nagy, Z., & Torok, Á. (2008). The effect of waste logistics on the environmental impact of road transport. Acta Technica Jaurinensis, 1(2), 365-370. Retrieved from https://acta.sze.hu/index.php/acta/article/view/109
Misra, Y., Kumar, D. J. P., Mishra, R. K., Kumar, V., & Dwivedi, N. (2025). Thermocatalytic pyrolysis of plastic waste into renewable fuel and value-added chemicals: A review of plastic types, operating parameters and upgradation of pyrolysis oil. Water-Energy Nexus. DOI: https://doi.org/10.1016/j.wen.2025.03.002
Németh, K. (2021). A körforgásos gazdaság alapjai. Jegyzet. Pannon Egyetemi Kiadó, Veszprém. URL: https://konyvtar.uni-pannon.hu/images/docman-files/efop343/e-jegyzetek/Nemeth_Kornel_A_korforgasos_gazdasag_alapjai.pdf
Saputro, B. A., Dafiqurrohman, H., Supriatna, N. K., Yan, M., Nugroho, R. A. A., Wang, W. C., & Surjosatyo, A. (2025). Steam gasification of municipal solid waste (MSW) using Fe2O3/Al2O3, and zeolite catalysts in a fixed-bed gasifier for hydrogen-rich syngas production. International Journal of Hydrogen Energy, 158, 150446. DOI: https://doi.org/10.1016/j.ijhydene.2025.150446
Siwale, L., Kristóf, L., Adam, T., Bereczky, A., Mbarawa, M., Penninger, A., & Kolesnikov, A. (2013). Combustion and emission characteristics of n-butanol/diesel fuel blend in a turbo-charged compression ignition engine. Fuel, 107, 409-418. DOI: https://doi.org/10.1016/j.fuel.2012.11.083
Sravan, J. S., Sahota, S., Sarkar, O., Reddy, M. V., Mohan, S. V., & Chang, Y. C. (2026). Technology advancements in future waste biorefineries: Focus on low carbon fuels and renewable chemicals. Fuel, 404, 136184. DOI: https://doi.org/10.1016/j.fuel.2025.136184
Szalmáné Csete M., Zöldy, M., Török, Á. (2024). Új mobilitási megoldások: technikai lehetőségek és pénzügyi aspektusok a fenntarthatóság tükrében. In A pénz jövője, a jövő pénze I–II. METu–MNB, Budapest.
Torok, A., Torok, A., & Heinitz, F. (2014). Usage of production functions in the comparative analysis of transport related fuel consumption. Transport and Telecommunication, 15(4), 292. DOI: https://doi.org/10.2478/ttj-2014-0025
Zöldy, M., Baranyi, P. Z., Török, Á. (2024). Trends in cognitive mobility in 2022. Acta Polytechnica Hungarica. 21(7), 189–202. DOI: 10.12700/APH.21.7.2024.7.11
Zöldy, M., Szalmáné Csete, M., Kolozsi, P. P., Bordás, P., Török, Á. (2022). Cognitive sustainability. Cognitive Sustainability. 1(1). DOI: https://doi.org/10.55343/CogSust.7
