Dynamic viscosity of road bitumens as an alternative of softening point

  • László Gáspár KTI
  • Szabolcs Rosta doktorandusz, Széchenyi István Egyetem
Keywords: bitumen classification, viscosity, Brookfield viscosity, capillary viscosity, road construction bitumen, softening point, DSR viscosity

Abstract

The research sought to find the most suitable replacement for softening point among the viscosities of two types of road construction bitumen measured using three methods (Brookfield and capillary dynamic, and DSR complex). The temperature was selected based on the values recommended for dynamic viscosity and complex viscosity measurements in the EN 12 591-2009 and AS 2008-2013 specifications for road construction bitumen, which was 60 °C. Changes in shear rate significantly affect complex viscosity values. A better  correlation was found between the softening point converted from the viscosities measured and the actual measured softening point at a frequency of 1 rad/sec than at a frequency of 10 rad/sec.

References

Alisov, A. (2017) Typisierung von Bitumen mittels instationärer Oszillationsrheometrie (Doktori disszertáció) Braunschweig: Braunschweigi Műszaki Egyetem, Útburkolatmérnöki Központ p. 114.

AS 2008 (2013) Bitumen for pavements,

Austroads, Austroads Test Method AGPT/T192 (2015) Characterisation of the Viscosity of Reclaimed Asphalt Pavement (RAP) Binder Using the Dynamic Shear Rheometer (DSR).

Austroads, Austroads Test Method AGPT/T193 (2015) Design of Bituminous Binder Blends to a Specified Viscosity Value.

Cox, W. P., Merz, E. H. (1958) Correlation of dynamic and steady flow viscosities. Journal of Polymer Science, 28, pp. 619-622. https://doi.org/10.1002/pol.1958.1202811812

Desmazes, C., Lecomte, M., Lesueur, D., Phillips, M. (2000) A protocol for reliable measurement of zero-shear-viscosity in order to evaluate the anti-rutting performance of binders. In Proceedings of the papers submitted for review at 2nd Eurasphalt and Eurobitume Congress, 20-22 September, Barcelona, 1 (1).

Erlandsson, I. (2012) Predicted viscosities for blends of various bitumen grades. Master Thesis. LTH, Lund University, Sweden (In Swedish; abstract in English). p. 30.

e-UT 05.01.26 (2018) Bitumenes kötőanyagok.

e-ÚT 05.02.11.(2021) Útpályaszerkezeti aszfaltburkolatok keverékeinek követelményei

Guericke, R. (2010) 100 Jahre Erweichungspunkt Ring und Kugel: was kommt danach? Straße und Autobahn 61(7), pp. 481-491. URL: http://worldcat.org/oclc/7286414

Heukelom, W. (1973) An improved method of characterizing asphaltic bitumens with the aid of their mechanical properties. Kloninklijke/Shell-Laboratorium, Amsterdam. Proc Assoc Asph Pav Tech, (42), p. 62-98.

Heukelom, WW. (1974) Eine verbesserte Methode der Charakterisierung von Bitumen mit Hilfe ihrer mechanischen Eigenschaften, Übersetzung von Güsfeldt, Bitumen 2, pp. 45-56.

Mezger T. G. (2014) The Rheology-Handbook, Hannover: Vincentz Network, p. 432.

MSZ EN 12596 (2023) Bitumen és bitumenes kötőanyagok. A dinamikai viszkozitás meghatározása vákuumkapilláris-módszerrel.

MSZ EN 13302 (2018) Bitumen és bitumenes kötőanyagok. A bitumenes kötőanyag dinamikai viszkozitásának meghatározása forgó orsós készülékkel.

MSZ EN 14770 (2023) Bitumen és bitumenes kötőanyagok. A komplex nyírási modulus és a fázisszög meghatározása. Dinamikus nyíróreométer (DSR).

MSZ EN 1427 (2016) Bitumen és bitumenes kötőanyagok. A lágyuláspont meghatározása. Gyűrűs-golyós módszer.

MSZ EN 1426 (2016) Bitumen és bitumenes kötőanyagok. A tűpenetráció meghatározása.

MSZ EN 12591 (2009) Bitumen és bitumenes kötőanyagok. Az útépítési bitumenek minőségi követelményei.

Neumann, H. (1995) Was ist Bitumen? Bitumen, Heft 4/95.

Nilsgart, E., Grybb, T. (2014) Rotational Viscometer, RVB - An alternative to conventional methods for measurement of bitumen viscosity. Master Thesis. LTH, Lund University, Sweden (In Swedish; abstract in English). p. 44.

Parhamifar, E., Tyllgren, P. (2016) Assessment of asphalt binder viscosities with a new approach. In Proceedings 6th Eurasphalt & Eurobitume Congress, Prague, Czech Republic, 1–3 June, 2016, pp. 8. https://dx.doi.org/10.14311/EE.2016.035

Phillips, M. C., Robertus, C. (1996) Binder rheology and asphaltic pavement permanent deformation; the zero-shear-viscosity. In 5th Eurasphalt & Eurobitume Congress, Strasbourg, 7-10 May, 3: 5.134.

Remisová E., Zatkaliková V., Schlosser F. (2016) Study of rheological properties of bituminous binders in middle and high temperatures. Civil and Environmental Engineering 12, pp. 13-20.

TL Bitumen-StB-Technische Lieferbedingungen für Straßenbaubitumen und gebrauchsfertige Polymermodifizierte Bitumen, Ausgabe 2007/Fassung 2013 (R 1)

Tóth S. (2006) Bitumen és aszfaltszabványok követelményrendszereinek reológiai alapjai. Az Aszfalt, 1, pp. 4-48.

Williams, M.L., Landel, R.F., Ferry, J.D. (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. Dept. of Chemistry, Univ. of Wisconsin. Journal of American Chemistry Society, 77: p. 370.

Published
2025-12-15
How to Cite
GáspárL., & RostaS. (2025). Dynamic viscosity of road bitumens as an alternative of softening point. Scientific Review of Transport, 75(6), 21-31. https://doi.org/10.24228/KTSZ.2025.6.3