Assessment of the small-scale spatial patterns in stand structure and leaf area index of the sessile oak-Turkey oak stand of Síkfőkút LTER site

  • Balázs Adorján University of Debrecen Faculty of Science and Technology Department of Botany
  • Viktor Oláh University of Debrecen Faculty of Science and Technology Department of Botany
  • Péter Kanalas University of Debrecen Faculty of Science and Technology Department of Botany
  • Balázs Nyitrai University of Debrecen Faculty of Science and Technology Department of Botany
  • Ilona Mészáros University of Debrecen Faculty of Science and Technology Department of Botany
Keywords: LAI, climate change, forest change, field maple, sessile oak, Turkey oak

Abstract

In the present work we investigated structural changes in the Turkey oak-sessile oak forest stand of Síkfőkút LTER site (NE Hungary) which was previously affected by high tree mortality. From the 1970’ies a significant proportion of the formerly dominating sessile oak (Quercus petraea) trees died leading to the emergence of previously suppressed species in the forming canopy gaps. The formed second canopy layer is primarily composed of field maple (Acer campestre) thus, besides the two oak species, we included this species to stand structure analyses. We assessed spatial patterns in tree density, basal area and leaf area index by means of geoinformatics. Comparing LAI and tree density maps of species we concluded that the field maple has positive effect on LAI while the presence of dying or dead oaks decreases its value. Our results also suggested that despite the large spatial heterogeneity in density and basal area of the tree layer and different species, the LAI showed small variations and more homogenous spatial pattern.

References

Alessa, L., Kliskey, A. & Brown, G. (2008): Social–ecological hotspots mapping: A spatial approach for identifying coupled social–ecological space. – Landsc. Urban. Plan. 85: 27–39. doi: https://doi.org/10.1016/j.landurbplan.2007.09.007

Berki, I. & Rasztovits, E. (2004): Zonális fafajaink, különösen a kocsánytalan tölgy szárazságtolerancia határérték sávjának kutatása: Módszer, előzetes eredmények. – In: Mátyás, Cs. & Víg, P. (szerk.): IV. Erdő és klíma. pp. 209–219.

Bequet, R., Campioli, M., Kint, V., Vansteenkiste, D., Muys, B. & Ceulemans, R. (2011): Leaf area index development in temperate oak and beech forests is driven by stand characteristics and weather conditions. – Trees 25: 935–946. doi: https://doi.org/10.1007/s00468-011-0568-4

Bréda, N. J. J. (2003): Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. – J. Exp. Bot., 54: 2403–2417. doi: https://doi.org/10.1093/jxb/erg263

Cutini, A., Matteucci, G. & Mugnozza, S. M. (1998): Estimation of leaf area index with the Li-Cor LAI 2000 in deciduous forests. – For. Ecol. Manage. 105: 55–65. doi: https://doi.org/10.1016/s0378-1127(97)00269-7

Eriksson, H., Eklundh, L., Hall, K. & Lindroth, A. (2005): Estimating LAI in deciduous forest stands. – Agr. For. Met. 129: 27–37. doi: https://doi.org/10.1016/j.agrformet.2004.12.003

Führer, E. (1998): Oak decline in central Europe: a synopsis of hypotheses. – In: McManus, M. L., Liebhold, A. M. (szerk..): Population Dynamics, Impacts, an Integrated Management of Forest Defoliating Insects. U.S. Department of Agriculture, Forest Service, Gen. Tech. Rep. NE-247, pp. 7–24.

Jakucs, P. (1985): Higher Plants. In: Jakucs, P. (szerk.): Ecology of an oak forest in Hungary - Results of “Síkfőkút Project” 1. Akadémiai Kiadó, Budapest, Hungary, pp. 108–127.

Jakucs, P., Mészáros, I., Papp, B. L. & Tóth, J. A. (1986): Acidification of soil and decay of sessile oak in the “Sikfőkút Project” area (N-Hungary). – Acta Bot. Hung. 32: 303–322

Király, I. & Ódor, P. (2010): The effect of stand structure and tree species composition on epiphytic bryophytes in mixed deciduous– coniferous forests of Western Hungary. – Biol. Conserv. 143: 2063–2069. doi: https://doi.org/10.1016/j.biocon.2010.05.014

Kotroczó, Zs., Krakomperger, Zs., Koncz, G., Papp, M., Bowden, R. D. & Tóth, J. A. (2007): A síkfőkúti cseres-tölgyes fafaj-összetételének és struktúrájának hosszú távú változása. – Természetvédelmi Közlem. 13: 93–100.

Li, J. & Heap, A. D. (2014): Spatial interpolation methods applied in the environmental sciences: A review. – Environ. Model. Softw. 53: 173–189. doi: https://doi.org/10.1016/j.envsoft.2013.12.008

Mátyás, Cs. & Czimber, K. (2004): A zonális erdőhatár klímaérzékenysége Magyarországon – előzetes eredmények. – In: Mátyás, Cs. & Víg, P. (szerk.): IV. Erdő és klíma, pp. 35–44.

Mészáros, I., Veres, Sz., Kanalas, P., Oláh, V., Szöllősi, E., Sárvári, É., Lévai, L. & Lakatos, Gy. (2007): Leaf growth and photosynthetic performance of two co-existing oak species in contrasting growing seasons. – Acta Silv. Lign. Hung. 3: 7–20.

Misik, T., Kárász, I. & Tóthmérész, B. 2014. Understory development in an oak forest in Northern-Hungary: the subcanopy layer. – Acta Silv. Lign. Hung. 10: 9–21. doi: https://doi.org/10.2478/aslh-2014-0001

Misik, T., Varga, K., Veres, Zs., Kárász, I. & Tóthmérész, B. 2013. Long-term response of understorey cover, basal area and diversity to stand density in a mixed oak forest on the Síkfõkút plot in Hungary. – J. For. Sci. 59: 319–327. doi: https://doi.org/10.17221/15/2013-jfs

Móricz, N., Rasztovits, E., Gálos, B., Berki, I., Eredics, A. & Loibl, W. (2013): Modelling the Potential Distribution of Three Climate Zonal Tree Species for Present and Future Climate in Hungary. – Acta Silv. Lign. Hung. 9: 85–96. doi: https://doi.org/10.2478/aslh-2013-0007

Nackaerts, K., Coppin, P., Muys, B. & Hermy, M. (2000): Sampling methodology for LAI measurements with LAI-2000 in small forest stands. – Agr. For. Met. 101: 247–250. doi: https://doi.org/10.1016/s0168-1923(00)00090-3

Tinya, F. & Ódor, P. (2016): Congruence of the spatial pattern of light and understory vegetation in an old-growth, temperate mixed forest. – For. Ecol. Manage. 381: 84–92. doi: https://doi.org/10.1016/j.foreco.2016.09.027

Tóth, J. A. (2013): 40 éve az erdőökológiai kutatás szolgálatában: a Síkfőkút Project. – Erdészettudományi Közlemények 3: 7–19.

Trumbore, S., Brando, P. & Hartmann, H. (2015): Forest health and global change. – Science 349: 814–818. doi: https://doi.org/10.1126/science.aac6759

Wirth, R., Weber, B. & Ryel, R. J. (2001): Spatial and temporal variability of canopy structure in a tropical moist forest. – Acta Oecologica 22: 235−244. doi: https://doi.org/10.1016/s1146-609x(01)01123-7

Yang, D. H., Goerge, R. & Mullner, R. (2006): Comparing GIS-Based Methods of Measuring

Spatial Accessibility to Health Services. – J. Med. Sys. 30: 23–32. doi: https://doi.org/10.1007/s10916-006-7400-5

http://pro.arcgis.com

http://www.icp-forests.org/Manual.htm

Published
2018-12-31