Investigation of the health status of Picea abies and Pinus mugo tree species in the semi-natural forest stands of the Wechsel Mountains

  • Dominika Falvai Szent István University, Department of Nature Conservation and Landscape Management
  • Tivadar Baltazár Mendel University in Brno, Faculty of AgriSciences, Department of Agrochemistry
  • Zsófia Szegleti Szent István University, Department of Nature Conservation and Landscape Management
  • Szilárd Czóbel Szent István University, Department of Nature Conservation and Landscape Management
Keywords: Norway spruce, dwarf mountain pine, altitudinal transect, decay, fungal infestation

Abstract

Several climatic models predict a significant rise in temperature in mountainous regions, which, alongside other factors, may influence the distribution of montane species and the composition of local communities. Observed or predicted thermophilization in mountainous areas may accelerate the upward movement of forest-forming tree species in the Alps. In our research, we studied the changes of the health status of dominant coniferous species in the montane and subalpine zones of the Wechsel Mountains, along an elevation transect. Field measurements were performed using an ArborSonic FAKOPP 3D acoustic tomograph and an ArborElectro impedance tomograph, which are able to detect the extent and exact location of rotten parts, as well as the extent and location of fungal infestation, without destruction. For both Picea abies and Pinus mugo, we found significant but partly different correlations between the degree of rot and the altitude. In the spruce belt, the trend line fitted to the fungal infestation values was bell-shaped. Spruce proved to be significantly more rotten in the lower elevation area of its distribution. Consequently, a narrowing of the area of the spruce zone is likely to take place in the study area. From a conservational aspect, this is not favourable, as Picea abies is a dominant, stand-forming tree species, therefore the narrowing of the complete spruce habitat may have negative consequences for several species associated with the habitat, especially for those characterized by a lower ecological adaptability.

References

Baker, B. B. & Moseley, R. K. (2007): Advancing treeline and retreating glaciers: implications for conservation in Yunnan, PR China. – Arctic, Antarctic, and Alpine Research 39: 200–209. https://doi.org/10.1657/1523-0430

Bussotti, F., Pollastrini, M., Holland, V. & Brüggemann, W. (2015): Functional traits and adaptive capacity of European forests to climate change. – Environ. Exp. Bot. 111: 91–113. https://doi.org/10.1016/j.envexpbot.2014.11.006

Cazzolla Gatti, R., Callaghan, T., Velichevskaya, A., Dudko, A., Fabbio, L., Battipaglia, G. & Liang, J. (2019): Accelerating upward treeline shift in the Altai Mountains under last-century climate change. – Sci. Rep. 9: 7678. https://doi.org/10.1038/s41598-019-44188-1

Chropeňová, M., Gregušková, E. K., Karásková, P., Přibylová, P., Kukučka, P., Baráková, D. & Čupr, P. (2016): Pine needles and pollen grains of Pinus mugo Turra – A biomonitoring tool in high mountain habitats identifying environmental contamination. – Ecol Indic. 66: 132–142. https://doi.org/10.1016/j.ecolind.2016.01.004

D’Arrigo, R. D., Kaufmann, R. K., Davi, N., Jacoby, G. C., Laskowski, C., Myneni, R. B. & Cherubini, P. (2004): Thresholds for warming-induced growth decline at elevational tree line in the Yukon Territory, Canada. – Global Biogeochem Cy. 18: GB3021. https://doi.org/10.1029/2004gb002249

Defila, C. & Clot, B. (2005): Phytophenological trends in the Swiss Alps, 1951–2002. – Meteorol Z. 14: 191–196. https://doi.org/10.1127/0941-2948/2005/0021

Divós, F. & Divós, P. (2005): Resolution of stress wave based Acoustic Tomography. – In: Bröker, W. (ed.): Proceedings of the 14th International Symposium on Nondestructive Testing of Wood. Eberswalde, pp. 309–314.

Divós, F., Dénes, L. & Iniguez, G. (2005): Effect of crosssectional change of a board specimen on stress wave velocity determination. – Holzforschung 59: 230–231. https://doi.org/10.1515/HF.2005.036

Divós, F., Divós, P. & Divós, Gy. (2007): Acoustic Technique use from seedling to wooden structures. – In: Brashaw, B. (ed.): Proceedings of the 15th International Symposium on Nondestructive Testing of Wood. Duluth, pp. 230–231.

Dolezal, J., Altman, J., Vetrova, V. P. & Hara, T. (2014): Linking two centuries of tree growth and glacier dynamics with climate changes in Kamchatka. – Clim Chang. 124: 207–220. https://doi.org/10.1007/s10584-014-1093-4

Falk, W. & Hempelmann, N. (2013): Species Favourability Shift in Europe due to Climate Change: A Case Study for Fagus sylvatica L. and Picea abies (L.) Karst. Based on an Ensemble of Climate Models. – Int. J. Climatol. ID 787250. https://doi.org/10.1155/2013/787250

Faraway, J, J. (2005): Linear Models with R. – Boca Raton, Florida, 229 p.

Fox, J. & Weisberg, S. (2019): An {R} Companion to Applied Regression. – Third Edition. Thousand Oaks CA: Sage. https://socialsciences.mcmaster.ca/jfox/Books/Companion/

Gross, J. & Ligges, U. (2015): Nortest: Tests for Normality. – R package version 1.0-4. http://CRAN.R-project.org/package=nortest

Hilmers, T., Avdagić, A., Bartkowicz, L., et al. (2019): The productivity of mixed mountain forests comprised of Fagus sylvatica, Picea abies, and Abies alba across Europe. – Int. J. For. Res. 92: 512–522. https://doi.org/10.1093/forestry/cpz035

Holuša, J., Lubojacký, J., Čurn, V., Tonka, T., Lukášová, K. & Horák, J. (2018): Combined effects of drought stress and Armillaria infection on tree mortality in Norway spruce plantations. – Forest Ecol. Manag. 427: 434–445.

IPCC (2007): Fourth Assessment Report of Intergovermental Panel on Climate Change. http://www.ipcc.ch

Jacoby, W. G. (2000): Loess: a nonparametric, graphical tool for depicting relationships between variables. – Elect. Stud. 19: 577–613. https://doi.org/10.1016/S0261-3794(99)00028-1

Jump, A. S., Mátyás, Cs. & Peñuelas, J. (2009): The altitude-for-latitude disparity in the range retractions of woody species. – Trends Ecol. Evol. 24: 694–701. https://doi.org/10.1016/j.tree.2009.06.007

Lenoir, J., Gegout, J. C., Marquet, P. A., de Ruffray, P. & Brisse, H. (2008): A significant upward shift in plant species optimum elevation during the 20th century. – Science 320: 1768–1771. https://doi.org/10.1126/science.1156831

Liang, E., Wang, Y., Piao, S., Lu, X., Camarero, J. J., Zhu, H., Zhu, L., Ellison, A. M., Ciais, P. & Peñuelas, J. (2016): Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau. – Proceedings of the National Academy of Sciences. 113: 4380–4385. https://doi.org/10.1073/pnas.1520582113

Máliš, F., Kopecký, M., Petřík, P., Vladovič, J., Merganič, J. & Vida, T. (2016): Life stage, not climate change, explains observed tree range shifts. – Glob. Change Biol. 22: 1904–1914. https://doi.org/10.1111/gcb.13210

Matthias, J., Bugmann, H., Nötzli, M. & Bigler, C. (2017). Among-tree variability and feedback effects result in different growth responses to climate change at the upper treeline in the Swiss Alps. – Ecol. Evol. 7: 7937–7953. https://doi.org/10.1002/ece3.3290

Mátyás, Cs. & Kramer, K. (2016): Az erdei génkészletek szerepe a klímaváltozáshoz alkalmazkodó gazdálkodásban = Adaptive management of forests and their genetic resources in the face of climate change. – Erdészettudományi Közlem. 6: 7–16.

Nogués-Bravo, D., Araújo, M. B., Errea, M. P. & Martínez-Rica, J. P. (2007): Exposure of global mountain systems to climate warming during the 21st Century. – Global Environ. Chang. 17: 420–428. https://doi.org/10.1016/j.gloenvcha.2006.11.007

OcCC (2008): Le climat change - que faire? – Le nouveau rapport des Nations Unies sur le climat (GIEC 2007) et ses principaux résultats dans l’optique de la Suisse. Berne: OcCC. http://www.proclim.ch

Pepin, N., Bradley, R. & Diaz, H. (2015): Elevation-dependent warming in mountain regions of the world. – Nature Clim. Change. 5: 424–430. https://doi.org/10.1038/nclimate2563

R Core Team (2020): R: A language and environment for statistical computing. – R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

Savva, Y., Oleksyn, J., Reich, P. B., Tjoelker, M. G., Vaganov, E. A. & Modrzynski, J. (2006): Interannual growth response of Norway spruce to climate along an altitudinal gradient in the Tatra Mountains, Poland. – Trees – Struct. Funct. 20: 735–746. https://doi.org/10.1007/s00468-006-0088-9

Sáenz-Romero, C., Kremer, A., Nagy, L., Újvári-Jármay, É., Ducousso, A., Kóczán-Horváth, A., Hansen, J. K. & Mátyás, Cs. (2019): Common garden comparisons confirm inherited differences in sensitivity to climate change between forest tree species. – PeerJ 7: e6213. https://doi.org/10.7717/peerj.6213

Trenyik, P., Ficsor, Cs., Demeter, A., Falvai, D. & Czóbel, Sz. (2017): Examination the health state with instrumental measurements and the diversity of sessile oak stands in Zemplén mountains. – Columella 4: 21–30. https://doi.org/10.18380/SZIE.COLUM.2017.4.1.21

Trenyik, P., Skutai, J., Szirmai, O. & Czóbel, Sz. (2019): Instrumental analysis of health status of Quercus petraea stands in the Carpathian Basin. – Central European Forestry Journal 65: 34–40. https://doi.org/10.2478/forj-2019-0001

Vittoz, P., Cherix, D., Gonseth, Y., Lubini, V., Maggini, R., Zbinden, N. & Zumbach, S. (2013): Climate change impacts on biodiversity in Switzerland: A review. – J. Nat. Conserv. 21: 154–162. https://doi.org/10.1016/j.jnc.2012.12.002

Wickham, H. (2016): ggplot2: Elegant graphics for data analysis. – Springer-Verlag, New York.

Wipf, S., Stöckli, V., Herz, K. & Rixen, C. (2013): The oldest monitoring site of the Alps revisited: accelerated increase in plant species richness on Piz Linard summit since 1835. – Plant Ecol. Divers. 6: 447–455. https://doi.org/10.1080/17550874.2013.764943

Published
2020-11-23
Section
Scientific Research