Using priority effect, propagule pressure and trait similarity to control invasive species by sowing native species

  • Nóra Sáradi Institute of Ecology and Botany, HUN-REN Centre for Ecological Research; National Laboratory for Health Security, HUN-REN Centre for Ecological Research; Institute of Agronomy, Hungarian University of Agriculture and Life Sciences
  • Edina Csákvári Institute of Ecology and Botany, HUN-REN Centre for Ecological Research; National Laboratory for Health Security, HUN-REN Centre for Ecological Research
  • Boglárka Berki Doctoral School of Biology, Institute of Biology, Eötvös Loránd University
  • Anikó Csecserits Institute of Ecology and Botany, HUN-REN Centre for Ecological Research; National Laboratory for Health Security, HUN-REN Centre for Ecological Research
  • Anna Cseperke Csonka Institute of Ecology and Botany, HUN-REN Centre for Ecological Research; National Laboratory for Health Security, HUN-REN Centre for Ecological Research; Doctoral School of Biology, Institute of Biology, Eötvös Loránd University
  • Bruna Paolinelli Reis Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa
  • Márton Vörös Institute of Ecology and Botany, HUN-REN Centre for Ecological Research; Doctoral School of Biology, Institute of Biology, Eötvös Loránd University
  • Katalin Török Institute of Ecology and Botany, HUN-REN Centre for Ecological Research
  • Melinda Halassy Institute of Ecology and Botany, HUN-REN Centre for Ecological Research; National Laboratory for Health Security, HUN-REN Centre for Ecological Research
Keywords: biotic resistance, ecological restoration, invasive plants, priority effect, propagule pressure, trait similarity

Abstract

Ecological restoration is an important tool in controlling plant invasions by management and increasing biotic resistance. We hypothesize that priority effect, increased propagule pressure of native species, and trait similarity enhance invasion resistance. In a controlled experiment, we tested the competition between three invasive species, representing different life forms and functional groups, and four native sandy grassland plant species with varying degrees of similarity. In the case of Asclepias syriaca, seed density and the sowing of similar native species were determinant. For Conyza canadensis, all three factors had a significant effect. Priority hindered seedling establishment in Tragus racemosus. Our results suggest that establishment of invasive plants can be limited by sowing native species, especially with higher seed densities and in seed mixes and by ensuring their earlier presence. Enhanced resistance can be achieved through a combination of different treatments.

References

Brooks, M. E., Kristensen, K., van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., Skaug, H. J., Maechler, M., Bolker, B. M. (2017): glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling. The R Journal 9(2): 378–400. https://doi.org/10.32614/RJ-2017-066

Buckley, Y. M., Bolker, B. M., Rees, M. (2007): Disturbance, invasion and re‐invasion: Managing the weed‐shaped hole in disturbed ecosystems. Ecology Letters 10: 809–817. https://doi.org/10.1111/j.1461-0248.2007.01067.x

Byun, C., Choi, H., Kang, H. (2020a): Effects of cutting and sowing seeds of native species on giant ragweed invasion and plant diversity in a field experiment. Journal of Ecology and Environment 44(1): 1–8. https://doi.org/10.1186/s41610-020-00173-8

Byun, C., de Blois, S., Brisson, J. (2020b): Restoring functionally diverse communities enhances invasion resistance in a freshwater wetland. Journal of Ecology 108: 2485–2498. https://doi.org/10.1111/1365-2745.13419

Carter, D. L., Blair, J. M. (2012): High richness and dense seeding enhance grassland restoration establishment but have little effect on drought response. Ecological Applications 22: 1308–1319. https://doi.org/10.1890/11-1970.1

Case, E. J., Harrison, S., Cornell, H. V. (2016): After an invasion: Understanding variation in grassland community recovery following removal of a high‐impact invader. Biological Invasions 18: 371–380. https://doi.org/10.1007/s10530-015-1009-x

Csákvári, E., Sáradi, N., Berki, B., Csecserits, A., Csonka, A. C., Reis, B. P., Török, K., Valkó, O., Vörös, M., Halassy, M. (2023): Native species can reduce the establishment of invasive alien species if sown in high density and using competitive species. Restoration Ecology 31: e13901. https://doi.org/10.1111/rec.13901

Csecserits, A., Czúcz, B., Halassy, M., Kröel-Dulay, G., Rédei, T., Szabó, R., Szitár, K., Török, K. (2011): Regeneration of sandy old-fields in the forest steppe region of Hungary. Plant Biosystems 145: 715–729. https://doi.org/10.1080/11263504.2011.601340

Davies, K. W., Johnson, D. D., Nafus, A. M. (2014): Restoration of exotic annual grass-invaded rangelands: Importance of seed mix composition. Invasive Plant Science and Management 7: 247–256. https://doi.org/10.1614/IPSM-D-12-00093.1

de Bello, F., Botta-Dukát, Z., Lepš, J., Fibich, P. (2021): Towards a more balanced combination of multiple traits when computing functional differences between species. Methods in Ecology and Evolution 12: 443–448. https://doi.org/10.1111/2041-210X.13537

Drenovsky, R. E., Grewell, B. J., D'antonio, C. M., Funk, J. L., James, J. J., Molinari, N., Parker, I. M., Richards, C. L. (2012): A functional trait perspective on plant invasion. Annals of Botany 110(1): 141–153. https://doi.org/10.1093/aob/mcs100

Fukami, T. (2015): Historical contingency in community assembly: Integrating niches, species pools, and priority effects. Annual Review of Ecology, Evolution, and Systematics 46: 1–23. https://doi.org/10.1146/annurev-ecolsys-110411-160340

Halassy, M., Batáry, P., Csecserits, A., Török, K., Valkó, O. (2023): Meta-analysis identifies native priority as a mechanism that supports the restoration of invasion-resistant plant communities. Communications Biology 6: 1100. https://doi.org/10.1038/s42003-023-05485-8

Haubrock, P. J., Turbelin, A. J., Cuthbert, R. N., Novoa, A., Taylor, N. G., Angulo, E., Ballesteros-Mejia, L., Bodey, T. W., Capinha, C., Diagne, C., Essl, F., Golivets, M., Kirichenko, N., Kourantidou, M., Leroy, B., Renault, D., Verbrugge, L., Courchamp, F. (2021): Economic costs of invasive alien species across Europe. In: Zenni, R. D., McDermott, S., García-Berthou, E., Essl, F. (Eds): Economic costs of biological invasions around the world. NeoBiota 67: 153–190. https://doi.org/10.3897/neobiota.67.58196

Hartig, F. (2020): DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.3.3.0

Hess, M. C., Buisson, E., Jaunatre, R., Mesléard, F. (2020): Using limiting similarity to enhance invasion resistance: Theoretical and practical concerns. Journal of Applied Ecology 57(3): 559–565. https://www.doi.org/10.1111/1365-2664.13552

Hulme, P. E. (2017): Climate change and biological invasions: evidence, expectations, and response options. Biological Reviews 92(3): 1297–1313. https://doi.org/10.1111/brv.12282

Jabbour, A. A., Kalapos, T., Hahn, I., Kovács-Láng, E., (1996): Field water relations of three sand steppe grass species. Abstracta Botanica 20(1): 37–46.

Khomenko, T., Tonkha, O., Pikovska, O. (2023): Invasive plant species and their threat to biodiversity. Plant and Soil Science 14(1): 51–65. https://doi.org/10.31548/plant1.2023.51

Lenth, R. (2023): emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.8.4-1, https://CRAN.R-project.org/package=emmeans

Levine, J. M., Adler, P. B., Yelenik, S. G. (2004): A meta-analysis of biotic resistance to exotic plant invasions. Ecology Letters 7: 975–989. https://doi.org/10.1111/j.1461-0248.2004.00657.x

Meyerson, L. A., Pauchard, A., Brundu, G., Carlton, J. T., Hierro, J. L., Kueffer, C., Pandit, M. K., Pyšek, P., Richardson, D. M., Packer, J. G. (2022): Moving toward global strategies for managing invasive alien species. In: Clements D. R., Upadhyaya M. K., Joshi S., Shrestha A. (eds.): Global Plant Invasions Springer, pp. 331–360. https://doi.org/10.1007/978-3-030-89684-3_16

R Core Team (2022): R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Reid, A. M., Morin, L., Downey, P. O., French, K., Virtue, J. G. (2009): Does invasive plant management aid the restoration of natural ecosystems? Biological Conservation 142: 2342–2349. https://doi.org/10.1016/j.biocon.2009.05.011

Reis, B. P., Szitár, K., Kövendi-Jakó, A., Török, K., Sáradi, N., Csákvári, E., Halassy, M. (2022): The long-term effect of initial restoration intervention, landscape composition, and time on the progress of Pannonic sand grassland restoration, Landscape and Ecological Engineering 18: 429–440. https://doi.org/10.1007/s11355-022-00512-y

Schantz M. C., Sheley R. L, James J. J. (2015): Role of propagule pressure and priority effects on seedlings during invasion and restoration of shrub-steppe. Biological Invasions 17: 73–85. https://doi.org/10.1007/s10530-014-0705-2

Schuster, M. J., Wragg, P. D., Reich, P. B. (2018): Using revegetation to suppress invasive plants in grasslands and forests. Journal of Applied Ecology 55: 2362–2373. https://doi.org/10.1111/1365-2664.13195

Shah, M. A., Callaway, R. M., Shah, T., Houseman, G. R., Pal, R. W., Xiao, S., Luo, W., Rosche, C., Reshi, Z. A., Khasa, D. P., Chen, S. (2014): Conyza canadensis suppresses plant diversity in its nonnative ranges but not at home: a transcontinental comparison. New Phytologist 202(4): 1286–1296. https://doi.org/10.1111/nph.12733

Stringham, O. C., Lockwood, J. L. (2021): Managing propagule pressure to prevent invasive species establishments: propagule size, number, and risk–release curve. Ecological Applications 31: e02314. https://doi.org/10.1002/eap.2314

Venables, W. N., Ripley, B. D. (2002): Modern Applied Statistics with S. Fourth edition. Springer, New York. ISBN 0-387-95457-0. https://www.stats.ox.ac.uk/pub/MASS4/

Weidlich, E. W., de Dechoum, M. D. S. (2021): Exploring the potential of using priority effects during ecological restoration to resist biological invasions in the neotropics. Restoration Ecology 29(1): e13295. https://doi.org/10.1111/rec.13295

Yannelli, F. A., MacLaren, C., Kollmann, J. (2020): Moving away from limiting similarity during restoration: timing of arrival and native biomass are better proxies of invasion suppression in grassland communities. Frontiers in Ecology and Evolution 8: 238. https://doi.org/10.3389/fevo.2020.00238

Yenish, J. P., Fry, T. A., Durgan, B. R., Wyse, D. L. (1996): Tillage effects on seed distribution and common milkweed (Asclepias syriaca) establishment. Weed Science 44: 815–820.

Young, S. L., Barney, J. N., Kyser, G. B., Jones, T. S., DiTomaso, J. M. (2009): Functionally similar species confer greater resistance to invasion: Implications for grassland restoration. Restoration Ecology 17: 884–892. https://doi.org/10.1111/j.1526-100X.2008.00448.x

Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A., Smith, G. M. (2009): Mixed Effects Models and Extensions in Ecology with R. Springer, New York, p. 574.

Published
2024-09-19
Section
Scientific Research