Spatial pattern and parasitisation of rose shrubs (Rosa spp.) by Diplolepis rosae
Abstract
Aggregation is a biologically significant property of parasites, because distribution of parasites between hosts is usually aggregated: on a few hosts there are many parasites, while on the majority of hosts there are just a few. We studied the effect of changes in spatial pattern and density of rose shrubs on its parasitisation by D. rosae cynipid wasps. The study was made during two years on eight sample sites. Our results show that rose shrubs on high densities show uniform distribution, while on low densities they appear aggregated using discrepancy and patchiness indices. Aggregated pattern of rose shrubs has a negative correlation with aggregation of galls on shrubs. Spatial distribution of rose shrubs has an effect on parasitisation too, with growing aggregation increases the prevalence of D. rosae.
References
Abrahamson, W. G. & Weis, A. E. (1997): Evolutionary ecology across three trophic levels: goldenrods, gallmakers and natural enemies. - Princeton University Press, Princeton, New Jersey, USA. 456 pp.
Altizer, S., Harvell, D. & Friedle, E. (2003): Rapid evolutionary dynamics and disease threats to biodiversity. - Trends Ecol. Evol., 18: 589-596.
Baddeley, A. & Turner, R. (2005): Spatstat: an R package for analyzing spatial point patterns. - J. Star. Soft., 12: 1-42.
Cressie, N. (1993): Statistics for Spatial Data. - John Wiley & Sons Inc., New York, 900 pp.
Cronin, J. T. & Strong, D. R. (1999): Dispersal-dependent oviposition and population dynamics of a host and párásítóid. - Am. Nat., 154: 23-36.
Hails, R. S. & Crawley, M. J. (1992): Spatial density dependence in populations of a cynipid gall-former Andricus quercuscalicis. - J. Anim. Ecol., 61: 567-583.
Heads, P. A. & Lawton, J. H. (1983): Studies on the natural enemy complex of the holly leafminer: the effects of scale on the detection of aggregative processes and the implications for biological control. - Oikos, 40: 267-276.
Lloyd, M. (1967): Mean crowding. — J. Anim. Ecol., 36: 1-30.
Memmott, J., Martinez, N. D. & Cohen, J. E. (2000): Predators, parasitoids and pathogens: species richness, trophic generality and body sizes in a natural food web. - J. Anim. Ecol., 69: 1-15.
Poulin, R. (1993): The disparity between observed and uniform distributions: a new look at parasite aggregation. - Int. J. Párásítói, 23: 937-944.
R Development Core Team (2005): R: A Language and Environment fo r Statistical Computing. - R Foundation for Statistical Computing, Vienna, Austria. (URL http://www. R-project.org).
Ray, C. & Hastings, A. (1996): Density dependence: are we searching at the wrong spatial scale? - J. Anim. Ecol, 65: 556-566.
Rékási, J., Rózsa, L. & Kiss J. B. (1997): Patterns in the distribution of avian lice (Phthiraptera: Amblycera, Ischnocera). - J. Avian Biol., 28: 150-156.
Rózsa, L., Reiczigel, J. & Majoros, G. (2000): Quantifying parasites in samples of hosts. - J. Párásítói, 86: 228-232.
Rózsa, L., Rékási, J. & Reiczigel, J. (1996): Relationship of host coloniality to the population ecology of avian lice (Insecta: Phthiraptera). - J. Anim. Ecol., 65: 242-248.
Sandin, S. A. & Pacala, S. W. (2005): Fish aggregation results in inversely density-dependent predation on continuous coral reefs. - Ecology, 86: 1520-1530.
Schönrogge, K., Stone, G. N. & Crawley, M. J. (1995): Spatial and temporal variation in guild structure - parasitoids and inquilines of Andricus quercuscalicis (Hymenoptera, Cynipidae) in its native and alien ranges. - Oikos, 72: 51-60.
Stiling, P. D. & Strong, D. R. (1982): Egg density and the intensity of parasitism in Prokelisia marginata (Homoptera, Delphacidae). - Ecology, 63: 1630-1635.
Walde, S. J. & Murdoch, W. W. (1988): Spatial density dependence in parasitoids. - Annii. Rev. Entomol., 33: 441-466.
Williams, D. W. & Liebhold , A. M. (2000): Spatial scale and the detection of density dependence in spruce budworm outbreaks in eastern North America. - Oecologia, 124: 544-552.