Landscape and agricultural management effects on pollinator communities of pastures and arable fields

  • Ádám Szirák Eötvös Loránd University, Faculty of Science, Institute of Biology
  • Anikó Kovács-Hostyánszki MTA ÖK Centre for Ecological Research, ,,Lendület” Ecosystem Services Research Group
  • Rita Földesi MTA ÖK Centre for Ecological Research, ,,Lendület” Ecosystem Services Research Group
  • Edina Mózes Eötvös Loránd University, Faculty of Science, Institute of Biology
  • András Báldi MTA ÖK Centre for Ecological Research, ,,Lendület” Ecosystem Services Research Group
Keywords: butterfly, ecosystem services, hoverfly, pollination, spatial heterogeneity, topography, wild bee

Abstract

Recently, one of the most important areas of the ecosystem related studies is pollination ecology, a regulatory ecosystem service. The study of pollination systems, exposed to growing agricultural pressure as a result of global biodiversity loss, is outstanding, since the third of the agriculturally and economically important crops is pollinated by animals. We studied the effects of topographical complexity, landscape heterogeneity and wood cover on pollinator communities in arable fields and grasslands in Szászföld, Transylvania in a three months long sampling period. We tested the effects of landscape variables, the number of flowering plant species and flower units on the abundance of different pollinator groups, sampled by transect walking method using general linear mixed effect models.
The observed wild bees and butterflies were more abundant in pastures, while bumblebees and hoverflies were more common in arable fields. The greater the wood cover was, the higher was the abundance of butterflies, while the lower topographic complexity areas showed higher butterfly abundance. Regarding temporal dynamics, the abundance of pollinators was the highest in July and the lowest in May. Our results demonstrate the vegetation preference of the different pollinator groups. Our findings clearly illustrate the importance of landscape and flower resources in the habitat preference of the pollinator groups.

References

Báldi, A. (szerk.) (2011): Biodiverzitás és ökoszisztéma szolgáltatás. – Magyar Tudomány 7: 770–801.

Balvanera, P., Pfi sterer, A. B., Buchmann, N., Jing-Sen, He., Nakashizuka, T., Raffaelli, D. & Schmid, B. (2006): Quantifying the evidence for biodiversity effects on ecosystem functioning and services. – Ecology letters 9: 1146–1156.

Basilio, A., Medan, D., Torretta, J. P. & Bartoloni, N. J. (2006): A year-long plant-pollinator network. – Austral Ecology 31: 975–983.

Carre, G., Roche, P., Chiffl et, R., Morison, N., Bommarco, R., Harrison-Cripps, J., Krewenka, K., Potts, S. G., Roberts, Stuart, P. M., Rodet, G., Settele, J., Steffan-Dewenter, I., Szentgyörgyi, H., Tscheulin, T., Westphal, C., Woychiechowski, M. & Vaissiere, B. E. (2009): Landscape context and habitat type as drivers of bee diversity in European annual crops. – Agriculture, ecosystem and environment 133: 40–47.

Dorresteijn, I., Hartel, T., Hanspach, J., von Wehrden, H. & Fischer J.: The conservation value of traditional rural landscapes: the case of woodpeckers in Transylvania, Romania. – PLoS ONE, 8: e65236.

Ebeling, A., Klein A. M., Schumacher, J., Weisser, W. W. & Tscharntke, T. (2008): How does plant richness affect pollinator richness and temporal stability of flower visits? – Oikos 117: 1808–1815.

Fahrig, L., Baudry, L., Brotons, L., Burel, F. G., Crist, T. O., Fuller, R. J., Sirami, C., Siriwardena, G. M. & Martin, J. L. (2011): Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. – Ecology letters 14: 101–112.

FAOSTAT (2005): Adatok elérhetők: http://faostat.org; Agriculturaldata/Agriculturalproduction/ Cropsprimary

Földesi, R., (2011): A zengőlegyek (Diptera: Syrphidae) szerepe a beporzásban és a biológiai védekezésben. – Természetvédelmi Közlemények 17: 31–41.

Fründ, J., Eduard, K. L. & Blüthgen, N. (2010): Pollinator diversity and specialization in relation to flower diversity. Oikos 119: 1581–1590.

Gallai, N., Salles, J., Settele, J. & Vaissiere, B. (2009): Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. – Ecological Economics 68: 810–821.

Garibaldi L. A., Steffan-Dewenter I., Winfree, R., Aizen, M. A., Bommarco, R., Cunningham, S. A., Kremen, C., Carvalherio, L.G., Harder, L. D., Afi k, O., Bartomeus, I., Benjamin, F., Boreux, V., Cariveau, D., Chacoff, N. P., Dudenhöffer, J. H., Freitas, B. M., Ghazoul, J., Greenleaf, S., Hipólito, J., Holzschuh, A., Howlett, B., Isaacs, R., Javolek, S. K., Kennedy, C. M., Krewenka, K., Krisnan, S., Mandelik, Y., Mayfi eld, M. M., Motzke, I., Munyuli, T., Nault, B. A., Otieno, M., Petersen, J., Pisanti, G., Potts, S. G., Rader, R., Ricketts, T. H., Rundölf, M,. C. L. Seymour, Shüepp, C., Szentgyörgyi, H., Taki, H., Tschranke, T., Vergara, C. H., Viana, B. F., Wanger, T. C., Westphal, C., Williams, N. & Klein, A. M. (2013): Wild pollinators Enance Fruit Set of Crops Regardless of Honey Bee Abundance. – Science 339: 1608-1611.

Goulson, D. (2003): Effects of Introduced Bees on Native Ecosystems. – Annual Review of Ecology, Evolution, and Systematics 34: 1–26.

Greenleaf, S. S., Williams, N. M., Winfree, R. & Kremen, C. (2007): Bee foraging ranges and their relationship to body size. – Oecologia 153: 589–596.

Haines-Young, R. & Potschin, M. (2013): Common International Classifi cation of Ecosystem Servisec (CICES): Konzultácio a 4. változatról, 2012 augusztus-december. EEA framework contact No EEA/IEA/09/003

Klein, A. M., Vaissere, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham S., Kremen, C. & Tscharntke, T. (2007): Importance of pollinators in changing landscapes for world crops. – Proceedings. Biological sciences / The Royal Society 274: 303–313.

Kleijn, D. & van Langevelde, F. (2006): Interacting effects of landscape context and habitat quality on fower visiting insects in agricultural landscapes. – Basic and Applied Ecology 7: 201–214.

Meyer, B., Jauker, F. & Steffan-Dewenter, I. (2009): Contrasting resource-dependent responses of hoverfly richness and density to landscape structure. – Basic and Applied Ecology 10: 178–186.

Millenium Ecosystem Assessment (2005): Ecosystem and Human Well-being: Biodiversity Synthesis – World Resources Institute, Washington DC.

Norberg, J. (1999): Linking Nature ’ s services to ecosystems : some general ecological concepts. – Ecological Economics 29: 183–202.

O’Toole, C. & Raw, A. (szerk.) (1999): Bees of the World. – Blandford Pr., London, 192 pp.

Ollerton, J., Winfree, R. & Tarrant, S. (2011): How many flowering plants are pollinated by animals? – Oikos 120: 321–326.

Pinheiro, J., Bates, D., DebRoy, S., Sarkar D. & R Development Core Team (2012): nlme: Linear and Nonlinear Mixed Effects Models. R package version 3. 1–106.

R Development Core Team (2012): R: A language and environment for statistical computing. R FoundationforStatisticalComputing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org/.

Steffan-Dewenter, I., Münzenberg, U., Carsten, C., Thies, C. & Tschranke, T. (2002): Scaledependent effects of landscape context on three pollinator guilds. – Ecology 83: 1421–1432

Tilman, D., Cassman, K., Matson, P. A., Naylor, R. & Polasky, S. (2002): Agricultural sustainability and intensive production practices. – Nature 418: 671–677.

Tscharntke, T. & Brandl, R. (2004): Plant-insect interactions in fragmented landscapes. – Annual review of entomology 49: 405–430.

Warnes, G. R., Bolker, B. & Lumley, T. (2012): gplots: Various R programming tools for plotting data. R package version 2.6.0

Published
2013-12-31
Section
Scientific Research