Effects of extreme drought manipulation on free-living nematode densities

  • Judit Szakálas Department of Zoology and Animal Ecology, Szent István University
  • György Kröel-Dulay Institute of Ecology and Botany, Centre for Ecological Research, Hungarian Acadamy of Sciences
  • Ivett Kerekes Department of Zoology and Animal Ecology, Szent István University
  • Anikó Seres Department of Zoology and Animal Ecology, Szent István University
  • Gábor Ónodi Institute of Ecology and Botany, Centre for Ecological Research, Hungarian Acadamy of Sciences
  • Péter Nagy Department of Zoology and Animal Ecology, Szent István University
Keywords: climate manipulation, vegetation cover, precipitation exclosure

Abstract

Free living nematodes are a very numerous and diverse component of soil biota with a broad range of sensibility and generation time. Therefore, this group is widely used for environmental indication. During the first year of an experiment called ExDRain (Extreme Drought and Chronic Rain Manipulation Experiment), performed in the Hungarian Great Plain, we studied the effects of an extreme drought treatment (achieved by the complete exclosure of precipitation from the plots) on nematode density. The effects of presence or absence of vegetation on the nematode density were also examined. Our questions: (1) Are there any effects of the precipitation exclosure on the nematode densities? (2) Are there any effects of the vegetation on the nematode densities? At all of the four sampling times there were positive effects of the vegetation cover (March p < 0,001; May p < 0,001; July ; p < 0,01; September p < 0,01). The effect of the extreme drought was significant only twice: one and five months after the start of the precipitation exclosure treatment (May; p < 0,01; September ; p < 0,01). In conclusion, even density, this less sensitive nematological parameter may be suitable for monitoring the effects of robust changes in climate, but just supplemented with other indexes, like the distribution of the feeding groups.

References

Andrássy, I. & Farkas, K. (1988): Kertészeti növények fonálféreg kártevői. – Mezőgazdasági Kiadó, Budapest, 418 pp.

Baermann, G. (1917): Eine einfache Methode zur Auffindung von (nematoden) Ankylostomum Larven in Erdproben. – Geneesk. Tijdschr. Ned-Indië. 57: 131–137.

Bakonyi, G. & Nagy, P. (2000): Temperature-and moisture induced changes in the structure of the nematode fauna of a semiarid grassland - patterns and mechanisms. – Glob. Change Biol. 6: 697–707.

Bakonyi, G., Nagy, P., Kovács-Láng, E., Kovács, E., Barabás, S., Répási, V. & Seres, A. (2007): Soil nematode community structure as affected by temperature and moisture in a temperate semiarid shrubland. – Appl. Soil Ecol. 37: 31–40.

Bongers, T. (1990): The maturity index: an ecological measure of environmental disturbance based on nematode species composition. – Oecologia 83:14–19.

Bongers, T. & Bongers, M. (1998): Functional diversity of nematodes. – Appl. Soil Ecol. 10: 239– 251.

Czúcz, B., Kröel-Dulay, Gy., Rédei, T., Botta-Dukát, Z. & Molnár, Z. (2007): Éghajlatváltozás és biológiai sokféleség elemzések az adaptációs stratégia tudományos megalapozásához. – Kutatási jelentés, KVVM, pp. 1–9.

Kovács-Láng, E., Kröel-Dulay, Gy., Garadnai, J., Lhotsky, B., Barabás, S. & Beier, C. (2008): Experimental study of the effects of climate change, the VULCAN Project – Experimental design, changes in phenology and plant cover. – In: Kovács-Láng, E., Molnár, E., Kröel-Dulay Gy. & Barabás, S. (szerk.): The KISKUN LTER: Long-term ecological research in the Kiskunság. Hungary, pp. 47–48.

Landesman, W. J., Treonis, A. M. & Dighton, J. (2010): Effects of a one-year rainfall manipulation on soil nematode abundances and community composition. – Pedobi. Int. J. Soil Biol. doi:10.1016/j.pedobi.2010.10.002

Ilieva-Makulec, K., & De Boeck, H. J. (2013): Changes in soil nematode community structure following warming and drought manipulations in grassland mesocosm experiment. – Pol. J. Ecol. 61: 17–163.

Pen-Mouratov, S., He, X., & Steinberger, Y. (2004): Spatial distribution and trophic diversity of nematode populations under Acacia raddiana along a temperature gradient in the Negev Desert ecosystem. – J. Arid Environ. 56: 339–355.

R core team (2013): R STATISZTIKAI PROGRAM: http://www.r-project.org/

Steinberger, Y., Liang, W., Savkina, E., Meshi, T. & Barness, G. (2001): Nematode community composition and diversity associated with a tropoclimatic transect in a rain shadow desert. – Eur. J. Soil Biol. 37: 315–320.

s’Jacob J. & Van Bezooijen J. (1984): A manual for practical work in nematology. – Department of Nematology, Wageningen Agricultural University, 77 pp.

Verschoor, B. C., de Goede, R. G. M., de Vries, F. W. & Brussaard, L. (2001): Changes in the composition of the plant-feeding nematode community in grasslands after cessation of fertilizer application. – Appl. Soil Ecol. 17: 1–17.

Wilson, M. J. & Kakouli-Duarte, Th. (2009): Nematodes as Environmental Indicators. – CABI, Wallingford, pp. 1–341.

Wu, S., Zheng, D., Yin, Y., Lin, E. & Xu, Y. (2010): Northward-shift of temperature zones in China’s eco-geographical study under future climate scenario. – J. Geogr. Sci. 20(5): 643–651.

Published
2015-12-31