Susceptibility and sensitivity to chytridiomycosis of two anuran species native to Hungary

  • Tamás Drexler Department of Ecology, Institute of Biology, University of Veterinary; Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences
  • János Ujszegi Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences
  • Z. Márk Németh Department of Plant Pathology, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences
  • Judit Vörös Hungarian Natural History Museum
  • Attila Hettyey Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences
Keywords: chytridiomycosis, agile frog, common toad, tolerance, resistance

Abstract

The causal agent of chytridiomycosis, Batrachochytrium dendrobatidis is known to be present in the Carpathian Basin, however, there is no evidence for population declines accountable to this disease in Hungarian populations. This may partly be explained by the high tolerance of local amphibian populations. In our study, we experimentally infected larval individuals of the common toad (Bufo bufo) and the agile frog (Rana dalmatina) with a highly virulent, globally distributed Bd strain. We observed if there are any direct or indirect effects of exposure two weeks after metamorphosis. We did not observe significantly decreased survival, body mass or development rate resulting from exposure to Bd in either species. However, infection intensity was higher in toads than in frogs by an order of magnitude. Our results suggest that in Hungary, common toads are highly tolerant to Bd while agile frogs are rather resistant against this disease.

References

Baláž, V., Vörös, J., Civiš, P., Vojar, J., Hettyey, A., Sós, E., Dankovics, R., Jehle, R., Christiansen, D. G., Clare, F., Fisher, M. C., Garner, T. W. J. & Bielby, J. (2014): Assessing Risk and Guidance on Monitoring of Batrachochytrium dendrobatidis in Europe through Identification of Taxonomic Selectivity of Infection. – Conserv. Biol. 28: 213–223. doi: http://dx.doi.org/10.1111/cobi.12128

Berger, L., Speare, R., Daszak, P., Green, D. E., Cunningham, A. A., Goggin, C. L., Slocombe, R., Ragan, M. A., Hyatt, A. D., McDonald, K. R., Hines, H. B., Lips, K. R., Marantelli, G. & Parkes, H. (1998): Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. – Proc. Natl. Acad. Sci. 95: 9031–9036.

Bosch, J. & Martínez-Solano, I. (2006): Chytrid fungus infection related to unusual mortalities of Salamandra salamandra and Bufo bufo in the Penalara Natural Park, Spain. – Oryx 40: 84–89.

Bosch, J., Martı́nez-Solano, I. & Garcı́a-Parı́s, M. (2001): Evidence of a chytrid fungus infection involved in the decline of the common midwife toad (Alytes obstetricans) in protected areas of central Spain. – Biol. Conserv. 97: 331–337. doi: http://dx.doi.org/10.1016/S0006-3207(00)00132-4

Boyle, D. G., Boyle, D. B., Olsen, V., Morgan, J. A. T. & Hyatt, A. D. (2004): Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. – Dis. Aquat. Organ. 60: 141–148. doi: http://dx.doi.org/10.3354/dao060141

Garner, T.W.J., Walker, S., Bosch, J., Leech, S., Marcus Rowcliffe, J., Cunningham, A. A. & Fisher, M. C. (2009): Life history tradeoffs influence mortality associated with the amphibian pathogen Batrachochytrium dendrobatidis. – Oikos 118: 783–791. doi: http://dx.doi.org/10.1111/j.1600-0706.2008.17202.x

Gosner, K. L. (1960): A Simplified Table for Staging Anuran Embryos and Larvae with Notes on Identification. – Herpetologica 16: 183–190.

Mendelson, J. R., Lips, K. R., Gagliardo, R. W., Rabb, G. B., Collins, J. P., Diffendorfer, J. E., Daszak, P. D. R. I., Zippel, K. C., Lawson, D. P., Wright, K. M., Stuart, S. N., Gascon, C., Silva, H. R. da, Burrowes, P. A., Joglar, R. L., Marca, E. L., Lötters, S., Preez, L.H. du, Weldon, C., Hyatt, A., Rodriguez-Mahecha, J. V., Hunt, S., Robertson, H., Lock, B., Raxworthy, C. J., Frost, D. R., Lacy, R. C., Alford, R. A., Campbell, J. A., Parra-Olea, G., Bolaños, F., Domingo, J. J. C., Halliday, T., Murphy, J. B., Wake, M. H., Coloma, L. A., Kuzmin, S. L., Price, M. S., Howell, K. M., Lau, M., Pethiyagoda, R., Boone, M., Lannoo, M. J., Blaustein, A. R., Dobson, A., Griffiths, R. A., Crump, M. L., Wake, D. B. & Brodie, E. D. (2006): Confronting Amphibian Declines and Extinctions. – Science 313: 48–48. doi: http://dx.doi.org/10.1126/science.1128396

Skerratt, L. F., Berger, L., Speare, R., Cashins, S., McDonald, K. R., Phillott, A. D., Hines, H. B.& Kenyon, N. (2007): Spread of Chytridiomycosis Has Caused the Rapid Global Decline and Extinction of Frogs. – EcoHealth 4: 125. doi: http://dx.doi.org/10.1007/s10393-007-0093-5

Van Rooij, P., Martel, A., Haesebrouck, F. & Pasmans, F. (2015): Amphibian chytridiomycosis: a review with focus on fungus-host interactions. – Vet. Res. 46: 137. doi: http://dx.doi.org/10.1186/s13567-015-0266-0

Woodhams, D. C., Bosch, J., Briggs, C. J., Cashins, S., Davis, L. R., Lauer, A., Muths, E., Puschendorf, R., Schmidt, B. R., Sheafor, B. & Voyles, J. (2011): Mitigating amphibian disease: strategies to maintain wild populations and control chytridiomycosis. – Front. Zool. 8: 8. doi: http://dx.doi.org/10.1186/1742-9994-8-8

http1: http://www.bd-maps.net/surveillance/, utolsó megtekintés időpontja: 2017.03.16.

Published
2017-12-31
Section
Scientific Research