Testing of metal accumulation of weeds in contaminated area

  • Dávid Tőzsér Department of Ecology, University of Debrecen
Keywords: metal, bioaccumulation, Chenopodium album, Tripleurospermum inodorum, weed species, plant organs

Abstract

In the last few decades, the remediation of contaminated areas with weeds is getting more and more attention. In this work we studied the metal (Al, Ba, Ca, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr and Zn) accumulation potential of Chenopodium album L. and Tripleurospermum inodorum (L.) Sch. Bip. based on the elemental concentration in roots, stem and leaves. Furthermore, we studied the correlation in metal concentration between soil and plant samples. Our results demonstrated that both species had low metal accumulation potential, compared to results from previous studies. Among plant parts of the species, we found leaves as the main metal accumulator organ. We indicated significant correlations in metal concentration between soil and plant species. We suggested that both C. album and T. inodorum can be successfully applied as metal accumulators, primarily due to high concentrations in leaves.

References

Applequist, W. l. (2002): A reassessment of the nomenclature of Matricaria L. and Tripleurospermum Sch. Bip. (Asteraceae). – Taxon 51: 757–761. doi: https://doi.org/10.2307/1555032

Armendaríz, M. D. R., Abellan, T. R., Gonzalez-Weller, D., Gonzalez, G. L., Fernandez, A. J. G. & de la Torre, A. H. (2014): Metals (Al, Mn, Sr, Cd and Pb) in phytopharmaceuticals (Matricaria recutita, Tilia officinalis and Salvia officinalis). – Toxicol. Lett. 229: S182. doi: https://doi.org/10.1016/j.toxlet.2014.06.621

Bandiera, M., Dal Cortivo, C., Barion, G., Mosca, G. & Vamerali, T. (2016): Phytoremediation opportunities with alimurgic species in metal-contaminated environments. – Sustainability-Basel. 8: 357. doi: https://doi.org/10.3390/su8040357

Bhargava, A., Shukla, S., Srivastava, J., Singh, N. & Ohri, D. (2008): Chenopodium: a prospective plant for phytoextraction. – Acta Physiol. Plant. 30: 111–120. doi: https://doi.org/10.1007/s11738-007-0097-3

Dousset, S., Morel, J. L., Jacobson, A. & Bitton, G. (2001): Copper binding capacity of root exudates of cultivated plants and associated weeds. – Biol. Fert. Soils. 34: 230–234. doi: https://doi.org/10.1007/s003740100404

Galfati, I., Bilal, E., Béji Sassi, A., Abdallah, H. & Zaïer, A. (2011): Accumulation of heavy metals in native plants growing near the phosphate treatment industry, Tunisia. – Carpath. J. Earth Env. 6: 85–100.

Geneva, M., Markovska, Y., Todorov, I. & Stancheva, I. (2014): Accumulation of Cd, Pb, Zn and antioxidant response in chamomile (Matricaria recutita L.) grown on industrially polluted soil. – Genet. Plant Physiol. 4: 131–139.

Gordon, W. S. & Jackson, R. B. (2000): Nutrient concentrations in fine roots. – Ecology 81: 275–280. doi: https://doi.org/10.1890/0012-9658(2000)081[0275:NCIFR]2.0.CO;2

Grejtovský, A., Markušová, K. & Eliašová, A. (2006): The response of chamomile (Matricaria chamomilla L.) plants to soil zinc supply. – Plant Soil Environ. 52: 1–7.

Gupta, A. K. & Sinha, S. (2007): Phytoextraction capacity of the Chenopodium album L. grown on soil amended with tannery sludge. – Bioresource Technol. 98: 442–446. doi: https://doi.org/10.1016/j.biortech.2006.01.015

Hoefer, C., Santner, J., Puschenreiter, M. & Wenzel, W. W. (2015): Localized metal solubilization in the rhizosphere of Salix smithiana upon sulfur application. – Envir. Sci. Tech. 49: 4522–4529. doi: https://doi.org/10.1021/es505758j

Hu, R., Sun, K., Su, X., Pan, Y. X., Zhang, Y. F. & Wang, X. P. (2012): Physiological responses and tolerance mechanisms to Pb in two xerophils: Salsola passerina Bunge and Chenopodium albumL. – J. Hazard. Mater. 205–206: 131–138. doi: https://doi.org/10.1016/j.jhazmat.2011.12.051

Ishikawa, Y., Sato, S., Kurimoto, Y., Yamada, H., Hayakawa, A. & Hidaka, S. (2014): Preliminary study of phytoremediation and biomass production by Salix species on abandoned farmland polluted with heavy metals. – J. Arid Land Stud. 23–24: 167–172.

Kacálková, L., Tlustoš, P. & Száková, J. (2015): Phytoextraction of risk elements by willow and poplar trees. – Int. J. Phytoremediat. 17: 414–421. doi: https://doi.org/10.1080/15226514.2014.910171

Kay, Q. O. N. (1994): Tripleurospermum inodorum (L.) Schultz Bip. – J. Ecol. 82: 681–697. doi: https://doi.org/10.2307/2261275

Liang, S. X., Gao, N., Li, Z. C., Shen, S. G. & Li, J. (2016): Investigation of correlativity between heavy metals concentration in indigenous plants and combined pollution soils. – J. Chem. Ecol. 32: 872–883. doi: https://doi.org/10.1080/02757540.2016.1203909

Lydakis-Simantiris, N., Skoula, M., Fabian, M. & Naxakis, G. (2012): Cultivation of medicinal and aromatic plants in heavy metal-contaminated soil – Exploitation with caution. 3rd International Conference on Industrial and Hazardous Waste Management, Crete, September 2012.

Mahar, A., Wang, P., Ali, A., Awasthi, M. K., Lahori, A. H., Wang, Q., Li, R. & Zhang, Z. (2016): Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. – Ecotox. Environ. Safe. 126: 111–121. doi: https://doi.org/10.1016/j.ecoenv.2015.12.023

Malik, R. N., Husain, S. Z. & Nazir, I. (2010): Heavy metal contamination and accumulation in soil and wild plant species from industrial area of Islamabad, Pakistan. – Pak. J. Bot. 42: 291–301.

Nouri, J., Khorasani, N., Lorestani, B., Karami, M., Hassani, A. H. & Yousefi, N. (2009): Accumulation of heavy metals in soil and uptake by plant species with phytoremediation potential. – Environ. Earth Sci. 59: 315–323. doi: https://doi.org/10.1007/s12665-009-0028-2

Nwaedozie, G. C., Mohammed, Y., Faruruwa, D. M., Nwaedozie, J. M. & Esekhagbe, R. O. (2015): Evaluation of accumulation ability for Pb, Cr, Ni, and Mn in native plants growing on a contaminated air force shooting range, Kaduna. – Glob. J. Sci. Front. Res. B. 15.

Parisien, M. A., Rutter, A. & Zeeb, B. A. (2015): Feasibility of using phytoextraction to remediate a compost-based soil contaminated with cadmium. – Int. J. Phytoremediat. 17: 1137–1143. doi: https://doi.org/10.1080/15226514.2014.1003792

Samantaray, S., Rout, G. R. & Das, P. (2001): Heavy metal and nutrient concentration in soil and plants growing on a metalliferous chromite minespoil. – Environ. Technol. 22: 1147–1154. doi: https://doi.org/10.1080/09593332208618204

Samatadze, T. E., Amosova, A. V., Suslina, S. N., Zagumennikova, T. N., Mel’nikova, N. V., Bykov, V. A., Zelenin, A. V. & Muravenko, O. V. (2014): Comparative cytogenetic study of the tetraploid Matricaria chamomilla L. and Matricaria inodora L. – Biology Bull. 41: 109–117. doi: https://doi.org/10.1134/S1062359013060125

Sharma, B. & Sharma, K. (2013): Nutrient accumulation in various plant parts of dominant tree species of three different localities. – Pak. J. Biol. Sci. 15–16: 965–968.

Simon, E., Baranyai, E., Braun, M., Cserháti, Cs., Fábián, I. & Tóthmérész, B. (2014): Elemental concentrations in deposited dust on leaves along an urbanization gradient. – Sci. Total Environ. 490: 514–520. doi: https://doi.org/10.1016/j.scitotenv.2014.05.028

Simon, E., Braun, M., Vidic, A., Bogyó, D., Fábián, I. & Tóthmérész, B. (2011): Air pollution assessment based on elemental concentration of leaves tissue and foliage dust along an urbanization gradient in Vienna. – Environ. Pollut. 159: 1229–1233. doi: https://doi.org/10.1016/j.envpol.2011.01.034

Simon, E., Harangi, S., Baranyai, E., Fábián, I. & Tóthmérész, B. (2016): Influence of past industry and urbanization on elemental concentrations in deposited dust and tree leaf tissue. – Urban For. Urban Gree. 20: 12–19. doi: https://doi.org/10.1016/j.ufug.2016.07.017

Simon, E., Vidic, A., Braun, M., Fábián, I. & Tóthmérész, B. (2013): Trace element concentrations in soils along urbanization gradients in the city of Wien, Austria. – Environ. Sci. Pollut. R. 20: 917–924. doi: https://doi.org/10.1007/s11356-012-1091-x

Stanojkovic-Sebic, A., Pivic, R., Josic, D., Dinic, Z. & Stanojkovic, A. (2015): Heavy metals content in selected medicinal plants commonly used as components for herbal formulations. – Tar. Bil. Der. 21: 317–325. doi: https://doi.org/10.1501/Tarimbil_0000001334

Tőzsér, D., Magura, T. & Simon, E. (2017): Heavy metal uptake by plant parts of willow species: A meta-analysis. – J. Hazard. Mater. 336: 101–109. doi: https://doi.org/10.1016/j.jhazmat.2017.03.068

Tőzsér, D., Harangi, S., Baranyai, E., Lakatos, Gy., Fülöp, Z., Tóthmérész, B. & Simon, E. (2018): Phytoextraction with Salix viminalis in a moderately to strongly contaminated area. – Environ. Sci. Pollut. R. 25: 3275–3290. doi: https://doi.org/10.1007/s11356-017-0699-2

Tůma, J., Skalický, M., Tůmová, L., Bláhová, P. & Rosůlková, M. (2004): Potassium, magnesium and calcium content in individual parts of Phaseolus vulgaris L. plant as related to potassium and magnesium nutrition. – Plant Soil Environ. 50: 18–26.

Vangronsveld, J., Herzig, R., Weyens, N., Boulet, J., Adriaensen, K., Ruttens, A., Thewys, T., Vassilev, A., Meers, E., Nehnevajova, E., van der Lelie, D. & Mench, M. (2009): Phytoremediation of contaminated soils and groundwater: lessons from the field. – Environ. Sci. Pollut. R. 16: 765–794. doi: https://doi.org/10.1007/s11356-009-0213-6

Yoon, J., Cao, X., Zhou, X. & Ma, L. Q. (2006): Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. – Sci. Total Environ. 368: 456–464. doi: https://doi.org/10.1016/j.scitotenv.2006.01.016

Zimmer, D., Baum, C., Leinweber, P., Hrynkiewicz, K. & Meissner, R. (2009): Associated bacteria increase the phytoextraction of cadmium and zinc from a metal-contaminated soil by mycorrhizal willows. – Int. J. Phytoremediat. 11: 200–213. doi: https://doi.org/10.1080/15226510802378483

Published
2018-12-31