The studying the co-occurrence of forest orchids and mushrooms with hypogeous fruiting bodies in the Carpathian basin

  • Lilla Bóna Eötvös Loránd University, Faculty of Science, Department of Plant Physiology and Molecular Plant Biology
  • Zsolt Merényi Hungarian Academy of Sciences, Biological Research Centre, Institute of Biochemistry Synthetic and Systems, Biology Unit
  • Zoltán Bratek Eötvös Loránd University, Faculty of Science, Department of Plant Physiology and Molecular Plant Biology
Keywords: orchids, mushrooms with hypogeous fruiting bodies, orchid mycorrhiza, „co-occurence”

Abstract

The family Orchidaceae abounds in endangered species, for this reason this family is significant for nature conservation. Additionally the members of this family are connected with many organisms, thus the protection of the symbionts and habitats of the orchids are the task of nature conservation. During our work we examined the correlation of the co-occurence of forest orchids and mushrooms producing hypogeous fruit bodies as based on our field experience this organisms are found often in same habitat. The co-occurence was tested with frequency and „co-occurence” analysis. Based on our results the true truffles (Tuber spp.), especially the sommer truffle (Tuber aestivum), occur most frequently in the same habitat as orchids, while co-occurrence statistic showed six positive orchid-mushrooms with hypogeous fruiting bodies connections. The co-occurence draws attention to the complying with the importance of the rules of truffle gathering, with wich the protection of the orchids and the mycelium of the mushroom can become reality.

References

Bidartondo, M. I., Burghardt, B., Gebauer, G., Bruns, T. D. & Read, D. J. (2004): Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. – Proc. R. Soc. Lond. B. 271: 1799–1806. doi: https://doi.org/10.1098/rspb.2004.2807

Bratek, Z., Illyés, Z., Szegő, D. & Vértényi, G. (2001): Az orchidea-típusú mikorrhiza képződésének és működésének egyes kérdései. – Bot. Közlem. 88: 185–193.

Bulpitt, C. J. (2005): The uses and misuses of orchids in medicine. – Q. J. Med. 98: 625–631. doi: https://doi.org/10.1093/qjmed/hci094

Dearnaley, J. D. W. (2007): Further advances in orchid mycorrhizal research. – Mycorrhiza 17: 475–486. doi: https://doi.org/10.1007/s00572-007-0138-1

Fay, M. F. (2016): Orchid conservation: Further links. – Ann. Bot. 118: 89–91. doi: https://doi.org/10.1093/aob/mcw147

Ghorbani, A., Gravendeel, B., Naghibi, F. & Boer, H. (2014): Wild orchid tuber collection in Iran: A wake-up call for conservation. – Biodivers. Conserv. 23: 2749–2760. doi: https://doi.org/10.1007/s10531-014-0746-y

Merényi, Zs., Illyés, Z., Völcz, G. & Bratek, Z. (2010): A database and its application for the development of truffle cultivation methods. – Österr. Z. Pilzk. 19: 239–244.

Molnár, V. A., Wilfried, V., Vidéki, R., Máté, A., Sulyok, J., Óvári, M., Mészáros, A., Tóth, I. Zs., Magos, G., Somlyai, L. & Bauer, N. (2011): Magyarország orchideáinak bemutatása. – In: Molnár, V. A. (szerk.): Magyarország orchideáinak atlasza. Kossuth Kiadó, Budapest, pp. 186–429.

Ouanphanivanh, N., Illyés, Z., Rudnóy, Sz. & Bratek, Z. (2007): Hazai Orchis militaris élőhelyek orchidea-mikorrhiza gombáinak vizsgálata. – Tájökológiai Lapok 5: 325–332.

Ouanphanivanh, N., Merényi, Zs., Orczán, Á. K., Bratek, Z., Szigeti, Z. & Illyés, Z. (2008): Could orchids indicate truffle habitats? Mycorrhizal association between orchids and truffles. – Acta Biol. Szeged. 52: 229–232.

Pecoraro, L., Girlanda, M., Kull, T., Perini, C. & Perotto, S. (2013): Fungi from the roots of the terrestrial photosynthetic orchid Himantoglossum adriaticum. – Pl. Ecol. Evol. 146: 145–152. doi: https://doi.org/10.5091/plecevo.2013.782

R Core Team (2013): R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

Rasmussen, H. N. (1995): Properties of „dust” seeds. In: Rasmussen, H. N. (szerk.): Terrestrial orchids from seed to mycotrophic plant. Cambridge University Press. pp. 7–14.

Roy, M., Yagame, T., Yamato, M., Iwase, K., Heinz, C., Faccio, A. & Selosse, M.-A. (2009): Ectomycorrhizal Inocybe species associate with the mycoheterotrophic orchid Epipogium aphyllum but not its asexualpropagules. – Ann. Bot. 104: 595–610. doi: https://doi.org/10.1093/aob/mcn269

Seaton, P. T., Hu, H., Perner, H. & Pritchard, H. W. (2010): Ex Situ Conservation of Orchids in a Warming World. – Bot. Rev. 76: 193–203. doi: https://doi.org/10.1007/s12229-010-9048-6

Selosse, M.-A., Faccio, A., Scappaticci, G. & Bonfante, P. (2004): Chlorophyllous and Achlorophyllous Specimens of Epipactis microphylla (Neottieae, Orchidaceae) Are Associated with Ectomycorrhizal Septomycetes, including Truffles. – Microb. Ecol. 47: 416–426. doi: https://doi.org/10.1007/s00248-003-2034-3 d

Smith, S. E. & Read, D. J. (2010): Ericoid, orchid and mycoheterotrophic mycorrhizas. In: Smith, S. E. & Read, D. J. (szerk.): Mycorrhizal symbiosis. Academic Press, Elsevier, pp. 387–522.

Veech, J. A. (2013): A probabilistic model for analysing species co-occurrence. – Global Ecol. Biogeogr. 22: 252–260. doi: https://doi.org/10.1111/j.1466-8238.2012.00789.x

Veech, J. A. (2014): The pairwise approach to analysing species co-occurrence. – J. Biogeogr. 41: 1029–1035. doi: https://doi.org/10.1111/jbi.12318

Published
2018-12-31