Application of network science in public transport

  • Balázs Dr. Horváth Széchenyi István Egyetem Építész-, Építő- és Közlekedésmérnöki Kar
Keywords: Public transport, network science, parallelism

Abstract

Public transport networks, like all networks, consist of a multitude of connections. The system of these connections builds up the transport service in the form of lines, routes and journeys. From time to time the question arises if our transport network is efficient and well organised. This article discusses the application of Barabási's network theory methods
to public transport and discusses the further development of the application of these theoretical methods to practical evaluations, using examples of the Hungarian rail and bus transport systems. The paper addresses questions such as whether these methods can help to assess the goodness of public transport networks, to judge whether a public transport network is sufficiently well organised or not.

References

Barabási Albert-László: Behálózva - A hálózatok új tudománya, Helikon Kiadó 2003.

Karinthy Frigyes: Minden másképpen van (Láncszemek), 1929

Barabási Albert-László: A hálózatok tudománya, Libri 2017.

Erdős Pál – Rényi Alfréd: On Random Graphs I, Publicationes Mathematicae vol. 6, 290-297 (1959)

Watts, D. J. - Strogatz, S. H.: Collective dynamics of 'small-world' networks, Nature 1998. 393 (6684): 440–442. Bibcode:1998Natur.393..440W. DOI: https://doi.org/bwp37w PMID 9623998

Leo P Kadanoff: From Order to Chaos; Essays: Critical, Chaotic and Otherwise World Scientific Series on Nonlinear Science Series A: Volume 1 October 1993, p 576 DOI: https://doi.org/j9xq

Kenneth G. Wilson: Renormalization Group and Critical Phenomena: I. Renormalization Group and the Kadanoff Scaling Picture, Physics Review B, 4 (1971) pp3174-3183

Malcolm Gladwell: The Tipping Point, 2000, New York, Little, Brown

Zengwang Xu - Daniel Sui: Small-world characteristics on transportation networks, Journal of Geographical Systems, 2007, DOI: https://doi.org/bczvdk

Nilanchal Patel: Assessment of network traffic congestion through Traffic Congestability Value (TCV): a new index, 2015. DOI: https://doi.org/j9xr

Marc Barthelemy: Crossover from Scale-Free to Spatial Networks 2007 EPL (Europhysics Letters) 63(6):915 DOI: https://doi.org/dkgdtn

Michael T. Gastner - M. E.J. Newman: The spatial structure of networks 2006 Physics of Condensed Matter 49(2):247-252 DOI: https://doi.org/bsj6nx

Julian Sienkiewicz - Janusz A. Hołyst: Statistical analysis of 22 public transport networks in Poland, Phys. Rev. E 72, 046127 – 2005, DOI: https://doi.org/b43qnm

Ferber, C., Holovatch, T., Holovatch, Y. et al. Public transport networks: empirical analysis and modeling. Eur. Phys. J. B 68, 261–275 (2009). DOI: https://doi.org/dvh3kt

Berche, B., von Ferber, C., Holovatch, T. et al. Resilience of public transport networks against attacks. Eur. Phys. J. B 71, 125–137 (2009). DOI: https://doi.org/d8rksd

Rui Ding, Norsidah Ujang, Hussain bin Hamid, Jianjun Wu: Complex Network Theory Applied to the Growth of Kuala Lumpur’s Public Urban Rail Transit Network, 2015 Plos One, DOI: https://doi.org/f762xn

Published
2023-06-15
How to Cite
Dr. HorváthB. (2023). Application of network science in public transport. Scientific Review of Transport, 73(3), 5-17. https://doi.org/10.24228/KTSZ.2023.3.1
Section
Articles