Determination of the degree of behaviour of domestic bitumens based on meteorological data of a test plot in Sopron

  • András Herceg Soproni Egyetem, Humán és Természeti Erőforrások Kutató Központ
  • Csaba Tóth Budapesti Műszaki és Gazdaságtudományi Egyetem, Út és Vasútépítési Tanszék
  • Péter Primusz Budapesti Műszaki és Gazdaságtudományi Egyetem, Út és Vasútépítési Tanszék
  • Péter Kalicz Soproni Egyetem, Földmérési, Térképészeti, Erdőfeltárási és Vízgazdálkodási Intézet
  • Zoltán Gribovszki Soproni Egyetem, Földmérési, Térképészeti, Erdőfeltárási és Vízgazdálkodási Intézet
Keywords: Bitumen, meteorology, behavior class

Abstract

In addition to traffic load, road structures are also exposed to climatic effects during their operation. Recognizing the importance of this, a new paving bitumen grading system was developed and integrated into the American Strategic Highway Research Program (SHRP) in the U.S. in the last decade of the last century. After learning about the American results,
Hungary established a laboratory suitable for testing according to the SHRP binder standard already in 1995, and started the SHRP compliance testing of paving bitumens.
However, this innovative process has been interrupted, and currently the classification of paving bitumens in Hungary is typically based on conventional testing procedures.
The key parameter of the behaviour-based binder standard is the recording of the performance grades (PG X-Y). Although this took place in the 1990s after the processing
of the Hungarian climatic data, it needs to be updated now.

The research described here presents the results of a methodology where, using the temperature data of the selected Sopron test cell, not only current climate conditions but also those predicted for the future are taken into account.

References

AASHTOM320-10: Standard Specification for Performance- Graded Asphalt Binder. American Association of State Highway and Transportation Officials, 2010

Bartholy, J., Bozó L. & Haszpra L. (szerk.) 2011: Klímaváltozás – 2011. Klímaszcenáriók a Kárpát–medence térségére. Magyar Tudományos Akadémia és az Eötvös Loránd Tudományegyetem Meteorológiai Tanszéke, Budapest, p. 281.

Bonchenko, A. 1994. Asfaltobeton: Sdvigoustoichivost i tekhnologiia modifitsirovaniia polimerom. Моskva: Mashinostroenie. 176 p. (in Russian)

Boromissza, T. 1997: Méretezési Praktikum, Aszfaltburkolatú útpályaszerkezetek méretezési gyakorlata, Közúti közlekedési füzetek 16, Közlekedési, Hírközlési és Vízügyi Minisztérium, Budapest, p. 82.

Christensen, J. H. & Christensen, O.B. 2007: A summary of the PRUDENCE model projections of changes in European climate by the end of this century, Climatic Change 81:7–30, HYPERLINK "about:blank" DOI: https://doi.org/fwn566

Dobor, L., Barcza, Z., Hlásny, T., Havasi, Á., 2013. Creation of the FORESEE database to support climate change related impact studies. International Scientific Conference for PhD Students.

Gálos, B. & Vig, P. 2014: Éghajlati tendenciák a Kárpát medencében és Zala megyében. In: Bidló A., Király A., Mátyás Cs. (szerk.) Agrárklíma: Az előrevetített klímaváltozás hatáselemzése és az alkalmazkodás lehetősége, Nyugat-Magyarországi Egyetem Kiadó, Sopron, 2014. 7-16. (ISBN:978-963-334-204-6)

Gálos, B., Lorenz, Ph. & Jacob, D. 2007: Will dry events occur more often in Hungary in the future? Environ. Res. Lett., 2, 034006 (9pp), DOI: https://doi.org/d3z7mm

Gálos, B., Antal V., Czimber, K. & Mátyás, Cs. 2014: Forest ecosystems, sewage works and droughts – possibilities for climate change adaptation. In: Santamarta J.C., Hernandez-Gutiérrez L.E., Arraiza M.P. (eds) 2014. NaturalHazards and Climate Change/Riesgos Naturales y Cambio Climático. Madrid: Colegio de Ingenieros de Montes. ISBN 978-84-617-1060-7, D.L. TF 565-2014, 91-104, DOI: https://doi.org/hb7q

Gálos, B., Führer, E., Czimber, K., Gulyás, K., Bidló, A., Hänsler, A., Jacob, D., Mátyás, CS. (2015): Climatic threats determining future adaptive forest management – a case study of Zala County,

IDŐJÁRÁS, Quarterly Journal of the Hungarian Meteorological Service Vol. 119, No. 4, October – December, 2015, pp. 425–441

Gáspár, L. 2007: A klímaváltozás és az útburkolatok. Közúti és mélyépítési szemle. 2007 március, 3. szám: 1-6.

Gribovszki, Z., Kalicz, P., Herceg, A., Primusz, P. 2020: A klimatikus jellemzők hatásai az útpályaszerkezetre, Útügyi Lapok, DOI: https://doi.org/ggtz2t

Herceg, A. 2017: A növényzet vízkörforgalomra gyakorolt hatása a klímaváltozás tükrében, PhD értekezés, Soproni Egyetem, pp. 70

IPCC (2014): Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.

Jacob, D., Barring, L., Christensen, O.B. Christensen, J.H., Castro, M., Deue, M., Giorgi, F., Hagemann, S., Hirschi, M., Jones, R., Kjellström, E., Lenderink, G., Rockel, B., Sanchez, E., Schar, C., Seneviratne, S.I., Somot, S., Van Ulden, A. & Van Den Hurk, B. 2007: An intercomparison of regional climate models for Europe: model performance in presentday climate. Clim Change, 81:31-52, DOI: https://doi.org/d5wk5h

Jacob, D., Kotova, L., Lorenz, P., Moseley, C. & Pfeifer, S. 2008: Regional climate modeling activities in relation to the CLAVIER project. Időjárás 112: 141–153.

Jacob, D., et 38 coauthors EURO–CORDEX 2014: newhigh–resolution climate change projections for European impact research, RegEnvironChange, DOI: https://doi.org/f9sfkm

Kjellström, E., Nikulin, G., Hansson, U., Strandberg, G. & Ullerstig, A. 2011: 21st century changes in the European climate: uncertainties derived from an ensemble of regional climate model simulations. Tellus 63A, 24–40.

Lakatos, M., Szépszó, G., Bihari, Z., Krüzselyi, I., Szabó, P., Bartholy, J., Pongrácz, R., Pieczka, I. & Torma, CS. (szerk.) 2012: HREX jelentés: Éghajlati szélsőségek változásai Magyarországon: Közelmúlt és jövő. http://www.met.hu/doc/IPCC_jelentes/HREX_jelentes-2012.pdf [Climate extreme changes in Hungary: recent past and future] (in Hungarian)

Leonovich, I.; Melnikova, I. 2011: Pogodno-klimaticheskie usloviia i ikh uchet pri vybore tekhnologii i organizacii dorozhnykh rabot, Trudy BGTU 2: 52–57. (in Russian)

Leonovich, I., & Melnikova, I. 2012: Influence of Temperature on the Formation of Damages in Asphalt Concrete Pavements under Climatic Conditions of the Republic of Belarus, The Baltic Journal of Road and Bridge Engineering 7(1): 42−47. DOI: https://doi.org/hb7r

van der Linden, P. & Mitchell, J.F.B. (Eds.), 2009: ENSEMBLES: Climate Change and its Impacts: Summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UK.

LTPP Data Analysis: Improved Low Pavement Temperature Prediction. Federal Highway Administration, Report No. FHWA-RD-97-104, 1998

Mukunde, R. & Ghassan, C. 2020: Determination of Temperature Zoning for the Great Lakes Region of Africa based on Superpave System. 495-501. DOI: https://doi.org/hb7s

Nováky, B. & Bálint, G. 2013: Shifts and Modification of the Hydrological Regime Under Climate Change in Hungary; DOI: https://doi.org/hb7t

Nunn, M. E. 1989: An Investigation of Reflection Cracking in Composite Pavements in the United Kingdom, in Proc. of the 1st International RILEM Conference on Reflective Cracking in Pavements, Assessment and Control. March, 1989, University of Liege, Belgium. 143–153.

Pethő, L. 2008: A hőmérséklet eloszlás alakulása az aszfalt burkolatú pályaszerkezetekben és ennek hatása a pályaszerkezeti rétegek méretezésére, technológiai tervezésére. PhD értekezés. Budapesti Műszaki és Gazdaságtudományi Egyetem.

Pongrácz, R., Bartholy, J. & Miklós, E. 2011: Analysis of projected climate change for Hungary using ENSEMBLES simulations. Applied Ecology and Environmental Research, 9(4), 387-398, DOI:

https://doi.org/hb7v

Pszczoła, Marek & Ryś, Dawid & Jaskula, Piotr. 2017: Analysis of climatic zones in Poland with regard to asphalt performance grading. Roads and Bridges. 16. 245 - 269. DOI: https://doi.org/gfxb58

Radziszewski, P., Sarnowski, M., Król, J., Pokorski, P., Jaskula, P., Ryś, D. & Pszczoła, M. 2019: Low-Temperature Requirements for Bitumen in Central East European Road Construction. The Baltic Journal of Road and Bridge Engineering. 14. 249-270.DOI: https://doi.org/gmqs33

Solaimanian, M. & Bolzan, P. 1993: Analysis of the Integrated Model of Climatic Effects on Pavements. Report No. SHRP-A-637, Strategic Highway Research Program. National Research Council. Washington, D.C.

Solaimanian M.: Development of SHRP Asphalt Research Program Climatic Databases. Report SHRP-A-685, Strategic Highway Research Program, National Research Council, Washington, D.C., 1994

Superpave Performance Graded Asphalt Binder Specification and Testing. Asphalt Institute, Superpave Series No. 1 (SP-1), 1995

Szalai, S. & Mika, J. 2007: A klímaváltozás és időjárási anomáliák előrejelzése az erdőtakaró szempontjából fontos tényezőkre. In Mátyás Cs.,Vig P. (szerk). Erdő és klima V. Sopron.

Szépszó, G. 2008: Regional change of climate extremes in Hungary based on different regional climate models of the PRUDENCE project, Időjárás 112 265–83.

The Asphalt Binder Handbook. Asphalt Institute, Manual Series No. 26 (MS-26), 2011

Tóth, S., Görgényi, Á., Karoliny, M. & Pcuhard, Z. 1997: A SHRP SUPERPAVE szerepe Észak-Amerikában és Európában. Közúti és Mélyépítési Szemle, 1999/7-8.

Tóth, S. 2001: Hazai útépítési bitumenek minősége (1996-2000). kutatási jelentés, ÁKMI Kht

Tóth, S. 1999: The Quality of the Bitumens Produced in Hungary According to the SHRP Specifications. Paper No 067

Vautard, R., Gobiet, A., Jacob, D. et 25 coauthors 2013: 41: 2555, DOI: https://doi.org/f5f3z4

Published
2022-02-15
How to Cite
HercegA., TóthC., PrimuszP., KaliczP., & GribovszkiZ. (2022). Determination of the degree of behaviour of domestic bitumens based on meteorological data of a test plot in Sopron. Scientific Review of Transport, 72(1), 32-47. https://doi.org/10.24228/KTSZ.2022.1.3
Section
Articles