The derivation and application possibilities of a stochastic shock wave model

  • Balázs Varga BME Közlekedésmérnöki és Járműmérnöki Kar Közlekedés- és Járműirányítási Tanszék
  • Tamás Tettamanti BME Közlekedésmérnöki és Járműmérnöki Kar Közlekedés- és Járműirányítási Tanszék
Keywords: stochastic shock wave model, urban transport, queue

Abstract

On busy city routes, traffic light cycles fundamentally determine the flow of traffic. An accurate knowledge of queue lengths forming at intersections with traffic lights is essential when operating intelligent intervention systems. Starting from the macroscopic fundamental diagram, this article introduces a shock wave model that incorporates the stochastic behaviour of vehicle traffic to derive the shock wave and queue length distribution functions. The model is validated using microscopic traffic simulation software and Monte Carlo simulation. The main conclusion is that the stochastic shock wave model can be effectively applied for modelling urban traffic.

References

P. B. Hunt, D. I. Robertson, R.D. Bretherton, and R. I. Winton,“SCOOT - A traffic responsive method of coordinating signals,” TRL Lab., Wokingham, U.K., Tech. Rep. 1014, 1981

V. Mauro and C. D. Taranto, “UTOPIA,” in Control, Computers, Communications in Transportation Research, J. P. Perrin, Ed. Oxford,U.K.: Pergamon, 1990, pp. 245–252. DOI: http://doi.org/ddn9

A. A. Zaidi, B. Kulcsár, H. Wymeersch, Back-pressure traffic signal control with fixed and adaptive urban vehicular networks, IEEE Transactions on Intelligent Transportation Systems 17 (8) (2016) 2134-2143. DOI: http://doi.org/f3scmz

H. Yang, H. Rakha, M. V. Ala, Eco-cooperative adaptive cruise control at signalized intersections considering queue effects, IEEE Transactions on Intelligent Transportation Systems 18 (6) (2017) 1575-1585. DOI: http://doi.org/ddpb

A. Sharma, D. Bullock, J. Bonneson, Input-output and hybrid techniques for real-time prediction of delay and maximum queue length at signalized intersections, Transportation Research Record: Journal of the transportation Research Board 8 (2035) (2007) 69{80. DOI: http://doi.org/fw429q

M. Fathy, M. Siyal, A window-based image processing technique for quantitative and qualitative analysis of road traffic parameters, IEEE Transactions on Vehicular Technology 47 (4) (1998) 1342{1349. DOI: http://doi.org/czdn5t

G. Comert, M. Cetin, Queue length estimation from probe vehicle location and the impacts of sample size, European Journal of Operational Research 197 (1) (2009) 196-202. DOI: http://doi.org/dj5z45

H. X. Liu, X. Wu, W. Ma, H. Hu, Real-time queue length estimation for congested signalized intersections, Transportation Research part C: Emerging Technologies 17 (4) (2009) 412-427. DOI: http://doi.org/dprtn9

D. Heidemann, Queue length and delay distributions at traffic signals, Transportation Research Part B: Methodological 28 (5) (1994) 377-389. DOI: http://doi.org/d6rt6h

G. K. Mung, A. C. Poon, W. H. Lam, Distributions of queue lengths at fixed time traffic signals, Transportation Research Part B: Methodological 30 (6) (1996) 421-439. DOI: http://doi.org/bfdhmz

F. Zheng, S. E. Jabari, H. X. Liu, D. Lin, Traffic state estimation using stochastic Lagrangian dynamics, Transportation Research Part B: Methodological 115 (2018) 143-165. DOI: http://doi.org/gd7zrc

X. Wu, H. X. Liu, A shockwave profile model for traffic flow on congested urban arterials, Transportation Research Part B: Methodological 45 (10) (2011) 1768-1786. DOI: http://doi.org/dpjqxq

Luspay T., Tettamanti T., Varga I.: Forgalomirányítás, Közúti járműforgalom modellezése és irányítása, ISBN 978-963-279-665-9, Typotex Kiadó, Budapest, 2011

K Aboudolas, M. Papageorgiou, E. Kosmatopoulos, Store-and-Forward based methods for the signal control problem in large-scale congested urban road networks, Transportation Research Part C: Emerging Technologies 17 (2) (2009) 163-174. DOI: http://doi.org/dv7df6

L. Arnold, Random dynamical systems, Springer Science and Business Media, 2013.

D. Heidemann, Queue length and delay distributions at traffic signals, Transportation Research Part B: Methodological 28 (5) (1994) 377-389. DOI: http://doi.org/d6rt6h

S. Karlin, A first course in stochastic processes, 2nd Edition, Academic Press, 1957, DOI: http://doi.org/ddpd

Leyn, U. and Vortisch, P, Calibrating VISSIM for the German Highway Capacity Manual. Karlsruhe Institute of Technology: Institute for Transport Studies, (2014) 1-11. DOI: http://doi.org/ddpf

How to Cite
VargaB., & TettamantiT. (1). The derivation and application possibilities of a stochastic shock wave model. Scientific Review of Transport, 69(6), 45-54. https://doi.org/10.24228/KTSZ.2019.6.4
Section
Articles