Autonomous vehicles and safe road infrastructure

  • Attila Borsos Széchenyi István Egyetem, Közlekedésépítési és Vízmérnöki Tanszék
  • Csaba Koren Széchenyi István Egyetem, Közlekedésépítési és Vízmérnöki Tanszék
Keywords: autonomous vehicles, road sefaty, road infrastructure

Abstract

The development of automated vehicles showed a rapid pace in the recent past, however less attention has been paid to the implications of vehicle automation on safe infrastructure design. A research initiative addressing this gap entitled "Autonomous vehicles and safe road infrastructure” was launched in 2019. Five topic areas have been formed as follows: 1) Road design (certain design aspects of intersections, cross-section and road sections); 2) Detection and perception (road work zones, traffic calming devices, road edges, road markings, and traffic signs); 3) Pavement design (implications of AVs on pavement design); 4) Vulnerable road users (communication and  behavioral adaptation); 5) Miscellaneous topics (e.g. conflict analysis). As a result of several brainstorming sessions involving researchers, road operators, vehicle engineers and IT scientists these broad areas have been broken down into specific research tasks. This paper gives an introduction of these research topics.

References

Farah, H., Erkens, S., Alkim, T., van Arem, B. (2018). Infrastructure for Automated and Connected Driving: State of the Art and Future Research Directions. in: G. Meyer and S. Beiker (eds.), Road Vehicle Automation 4, Lecture Notes in Mobility. Springer International Publishing AG, DOI: https://doi.org/f9vk

Egyházy Z. (2019). Az „okos út” és az autonóm járművek alkalmazásához szükséges közúti infrastruktúra környezet kialakítása. MSc diplomamunka. Széchenyi István Egyetem

Lengyel, H.; Tettamanti, T.; Szalay, Zs. (2020) Conflicts of Automated Driving With Conventional Traffic Infrastructure. IEEE ACCESS 8 pp. 163280-163297., 18 p. DOI: https://doi.org/gjr2v9

Khaska K., Miletics D. (2020). Do human driver-based road design parameters fulfil or overfulfil autonomous vehicles’ requirements? In: Horváth, B.; Horváth, G. (szerk.) Proc. X. Nemzetközi Közlekedéstudományi Konferencia, Győr, 2020. október 29-30.

Magyari, Zs., Koren, Cs. (2019). Visibility requirements at intersections: A comparison of capabilities of human drivers and autonomous vehicles. Pollack Periodica, 14(3):63–74, DOI: https://doi.org/f9vm

Deluka Tibljaš, A., Giuffrè, T., Surdonja, S., Trubia, S. (2018). Introduction of Autonomous Vehicles: Roundabouts

Design and Safety Performance Evaluation. Sustainability, 10, 1060. DOI: https://doi.org/gdsd54

Sohrweide T. (2018). Driverless Vehicles Set to Change the Way We Design Our Roadways, http://www.sehinc.com/news/future-whatdo-driverless-cars-mean-road-design

Tettamanti T., Varga I. (2019). Az autonóm járművek forgalmi hatásai: a jármű- és forgalomirányítás kihívásai. Közlekedéstudományi Szemle 1. sz. pp. 35-41. DOI: https://doi.org/f9vq

Snyder R. (2018). Street design implications of autonomous vehicles, Public Square a CNU journal, https://www.cnu.org/publicsquare/2018/03/12/street-designimplications-autonomous-vehicles

Mocsári, T. (2012). A sebesség hatása a forgalombiztonságra. doktori disszertáció, Széchenyi István Egyetem

United Nations Economic Commission for Europe (1968)., Vienna Convention on Road Signs and Signals, United Nations Publication, ISBN: 978-92-1-116973-7

European Commission (2019). Directive (EU) 2019/1936 of the European Parliament and of the Council of 23 October 2019 amending Directive 2008/96/EC on road infrastructure safety management, Official Journal of the European Union L 305/1

Aziz, S., Mohamed, E. A., Youssef, F. (2018). Traffic Sign Recognition Based on Multifeature Fusion and ELM Classifier, Procedia Computer Science 127, pp. 146–153 DOI: https://doi.org/f9vr

EuroRAP (2020). Saving Lives Assessing and Improving TEN-T Road Network Safety. D7.1: Quality of horizontal and vertical signs. http://seafile.irap.org/f/04e11831ff664d88a7c5/

National Committee on Traffic Devices (2019)., “NCUTCD Proposal for Pavement Marking Standards for Automated Driving Systems,” Available: https://ncutcd.org/wpcontent/uploads/Sponsor%20Comments/2019B/Attach04.19B-MKG-2.LineWidthforCAV.pdf.

Lengyel; H., Szalay, Zs. (2018). Classification of Traffic Signal System Anomalies for Environment Tests of Autonomous Vehicles. PRODUCTION ENGINEERING ARCHIVES 19: 19. pp. 43-47. DOI: https://doi.org/f9vs

Koren, Cs.; Szücs, G. (2020). Forgalomcsillapító eszközök: kihívások az autonóm járművek számára In: Péter, Tamás (szerk.) XIV. Innováció és fenntartható felszíni közlekedés konferencia, Budapest, Magyar Mérnökakadémia, Paper 23.

Noorvand, H., Karnati, G., and Underwood, B. S. (2017). Autonomous vehicles: Assessment of the implications of truck positioning on flexible pavement performance and design, Transp. Res. Rec., vol. 2640, no. January, pp. 21–28, DOI: https://doi.org/f9vt

Chen, F., Song, M., Ma, X., and Zhu, X. (2019). Assess the impacts of different autonomous trucks’ lateral control modes on asphalt pavement performance, Transp. Res. Part C Emerg. Technol., vol. 103, no. March, pp. 17–29, 2019, DOI: https://doi.org/f9vv

Nagy R., Fahad M. (2020). Autonóm járművek sávtartásának hatása a pályaszerkezet méretezésre – irodalomkutatás. XXIV. Nemzetközi Építéstudományi Online Konferencia – ÉPKO pp. 117-121

Yang, S. (2014). Health monitoring of pavement systems using smart sensing technologies, Iowa State University, Graduate Theses and Dissertations. Paper 14247

Kabanovs, A., Garmory, A., Passmore, M., and Gaylard, A. (2018) Investigation into the dynamics of wheel spray released from a rotating tyre of a simplified vehicle model, J. Wind Eng. Ind. Aerodyn., vol. 184, no. November 2018, pp. 228–246, DOI: https://doi.org/gjbtw2

Vissers, L., Kint, S., Schagen, I., Hagenzieker, M. (2016). Safe interaction between cyclists, pedestrians and automated vehicles, The Hague, SWOV Institute for Road Safety Research, The Netherlands

Lagström, T., Malmstem Lundgren, V. (2015). Autonomous vehicles’ interaction with pedestrians. An investigation of pedestriandriver communication and development of a vehicle external interface. MSc Thesis. Chalmers University of Technology. Gothenburg. Sweden

Lundgren V.M. et al. (2017). Will There Be New Communication Needs When Introducing Automated Vehicles to the Urban Context? In: Stanton N., Landry S., Di Bucchianico G., Vallicelli A. (eds) Advances in Human Aspects

of Transportation. Advances in Intelligent Systems and Computing, vol 484. Springer, Cham DOI: https://doi.org/gbvww6

Salman S., Miletics D. (2020). Analysis of driver-pedestrian interactions at pedestrian crossings, In: Horváth, B.; Horváth, G. (szerk.) Proc. X. Nemzetközi Közlekedéstudományi Konferencia, Győr, 2020. október 29-30.

Botello, B., Buehler, R., Hankey, S., Mondschein, A., Jiang, Z. (2019). Planning for walking and cycling in an autonomousvehicle future. Transportation Research Interdisciplinary Perspectives, Volume 1, 100012 DOI: https://doi.org/gg68rw

Phetoudom, S., Makó E. (2020). Pedestrian’s behavioural adaptation to AVs and its effect on road capacity. In: Iványi, Péter (szerk.) Abstract book for the 16th Miklós Iványi International PhD & DLA Symposium. Pécs, Pollack Press, Paper: 78.

Commsignia (2020). Commsignia introduces new dual-radio roadside unit, Accessed February 10, 2020, https://www.commsignia.com/news/commsignia-introduces-new-dualradio-roadside-unit/

Borsos A.; Farah, H.; Laureshyn, A.; Hagenzieker, M. (2020). Are collision and crossing course surrogate safety indicators transferable? A probability based approach using extreme value theory. Accident analysis and prevention, Paper: 105517 DOI: https://doi.org/gjddz2

Mahmud, S. S., Ferreira, L., Hoque, M. S., and Tavassoli, A. (2017). Application of proximal surrogate indicators for safety evaluation: A review of recent developments and research needs. IATSS Research, 2017. 41:153–163 DOI: https://doi.org/gf9kms

Kizawi, A., Borsos, A. (2020). Conflict analysis of vehicle-pedestrian interactions In: Iványi, Péter (szerk.) Abstract book for the 16th Miklós Iványi International PhD & DLA Symposium. Pécs, Pollack Press, Paper: 80

Gaál, B., Horváth, B. (2019): Autonomous cars and urban land use - city shaping force? In: Horváth, G.; Gaál, B.; Horváth, B. (szerk.) Nemzetközi Közlekedéstudományi Konferencia, Győr.

How to Cite
BorsosA., & KorenC. (1). Autonomous vehicles and safe road infrastructure. Scientific Review of Transport, 71(3), 4-16. https://doi.org/10.24228/KTSZ.2021.3.1
Section
Articles