Autonomous vehicles and safe road infrastructure
Abstract
The development of automated vehicles showed a rapid pace in the recent past, however less attention has been paid to the implications of vehicle automation on safe infrastructure design. A research initiative addressing this gap entitled "Autonomous vehicles and safe road infrastructure” was launched in 2019. Five topic areas have been formed as follows: 1) Road design (certain design aspects of intersections, cross-section and road sections); 2) Detection and perception (road work zones, traffic calming devices, road edges, road markings, and traffic signs); 3) Pavement design (implications of AVs on pavement design); 4) Vulnerable road users (communication and behavioral adaptation); 5) Miscellaneous topics (e.g. conflict analysis). As a result of several brainstorming sessions involving researchers, road operators, vehicle engineers and IT scientists these broad areas have been broken down into specific research tasks. This paper gives an introduction of these research topics.
References
Farah, H., Erkens, S., Alkim, T., van Arem, B. (2018). Infrastructure for Automated and Connected Driving: State of the Art and Future Research Directions. in: G. Meyer and S. Beiker (eds.), Road Vehicle Automation 4, Lecture Notes in Mobility. Springer International Publishing AG, DOI: https://doi.org/f9vk
Egyházy Z. (2019). Az „okos út” és az autonóm járművek alkalmazásához szükséges közúti infrastruktúra környezet kialakítása. MSc diplomamunka. Széchenyi István Egyetem
Lengyel, H.; Tettamanti, T.; Szalay, Zs. (2020) Conflicts of Automated Driving With Conventional Traffic Infrastructure. IEEE ACCESS 8 pp. 163280-163297., 18 p. DOI: https://doi.org/gjr2v9
Khaska K., Miletics D. (2020). Do human driver-based road design parameters fulfil or overfulfil autonomous vehicles’ requirements? In: Horváth, B.; Horváth, G. (szerk.) Proc. X. Nemzetközi Közlekedéstudományi Konferencia, Győr, 2020. október 29-30.
Magyari, Zs., Koren, Cs. (2019). Visibility requirements at intersections: A comparison of capabilities of human drivers and autonomous vehicles. Pollack Periodica, 14(3):63–74, DOI: https://doi.org/f9vm
Deluka Tibljaš, A., Giuffrè, T., Surdonja, S., Trubia, S. (2018). Introduction of Autonomous Vehicles: Roundabouts
Design and Safety Performance Evaluation. Sustainability, 10, 1060. DOI: https://doi.org/gdsd54
Sohrweide T. (2018). Driverless Vehicles Set to Change the Way We Design Our Roadways, http://www.sehinc.com/news/future-whatdo-driverless-cars-mean-road-design
Tettamanti T., Varga I. (2019). Az autonóm járművek forgalmi hatásai: a jármű- és forgalomirányítás kihívásai. Közlekedéstudományi Szemle 1. sz. pp. 35-41. DOI: https://doi.org/f9vq
Snyder R. (2018). Street design implications of autonomous vehicles, Public Square a CNU journal, https://www.cnu.org/publicsquare/2018/03/12/street-designimplications-autonomous-vehicles
Mocsári, T. (2012). A sebesség hatása a forgalombiztonságra. doktori disszertáció, Széchenyi István Egyetem
United Nations Economic Commission for Europe (1968)., Vienna Convention on Road Signs and Signals, United Nations Publication, ISBN: 978-92-1-116973-7
European Commission (2019). Directive (EU) 2019/1936 of the European Parliament and of the Council of 23 October 2019 amending Directive 2008/96/EC on road infrastructure safety management, Official Journal of the European Union L 305/1
Aziz, S., Mohamed, E. A., Youssef, F. (2018). Traffic Sign Recognition Based on Multifeature Fusion and ELM Classifier, Procedia Computer Science 127, pp. 146–153 DOI: https://doi.org/f9vr
EuroRAP (2020). Saving Lives Assessing and Improving TEN-T Road Network Safety. D7.1: Quality of horizontal and vertical signs. http://seafile.irap.org/f/04e11831ff664d88a7c5/
National Committee on Traffic Devices (2019)., “NCUTCD Proposal for Pavement Marking Standards for Automated Driving Systems,” Available: https://ncutcd.org/wpcontent/uploads/Sponsor%20Comments/2019B/Attach04.19B-MKG-2.LineWidthforCAV.pdf.
Lengyel; H., Szalay, Zs. (2018). Classification of Traffic Signal System Anomalies for Environment Tests of Autonomous Vehicles. PRODUCTION ENGINEERING ARCHIVES 19: 19. pp. 43-47. DOI: https://doi.org/f9vs
Koren, Cs.; Szücs, G. (2020). Forgalomcsillapító eszközök: kihívások az autonóm járművek számára In: Péter, Tamás (szerk.) XIV. Innováció és fenntartható felszíni közlekedés konferencia, Budapest, Magyar Mérnökakadémia, Paper 23.
Noorvand, H., Karnati, G., and Underwood, B. S. (2017). Autonomous vehicles: Assessment of the implications of truck positioning on flexible pavement performance and design, Transp. Res. Rec., vol. 2640, no. January, pp. 21–28, DOI: https://doi.org/f9vt
Chen, F., Song, M., Ma, X., and Zhu, X. (2019). Assess the impacts of different autonomous trucks’ lateral control modes on asphalt pavement performance, Transp. Res. Part C Emerg. Technol., vol. 103, no. March, pp. 17–29, 2019, DOI: https://doi.org/f9vv
Nagy R., Fahad M. (2020). Autonóm járművek sávtartásának hatása a pályaszerkezet méretezésre – irodalomkutatás. XXIV. Nemzetközi Építéstudományi Online Konferencia – ÉPKO pp. 117-121
Yang, S. (2014). Health monitoring of pavement systems using smart sensing technologies, Iowa State University, Graduate Theses and Dissertations. Paper 14247
Kabanovs, A., Garmory, A., Passmore, M., and Gaylard, A. (2018) Investigation into the dynamics of wheel spray released from a rotating tyre of a simplified vehicle model, J. Wind Eng. Ind. Aerodyn., vol. 184, no. November 2018, pp. 228–246, DOI: https://doi.org/gjbtw2
Vissers, L., Kint, S., Schagen, I., Hagenzieker, M. (2016). Safe interaction between cyclists, pedestrians and automated vehicles, The Hague, SWOV Institute for Road Safety Research, The Netherlands
Lagström, T., Malmstem Lundgren, V. (2015). Autonomous vehicles’ interaction with pedestrians. An investigation of pedestriandriver communication and development of a vehicle external interface. MSc Thesis. Chalmers University of Technology. Gothenburg. Sweden
Lundgren V.M. et al. (2017). Will There Be New Communication Needs When Introducing Automated Vehicles to the Urban Context? In: Stanton N., Landry S., Di Bucchianico G., Vallicelli A. (eds) Advances in Human Aspects
of Transportation. Advances in Intelligent Systems and Computing, vol 484. Springer, Cham DOI: https://doi.org/gbvww6
Salman S., Miletics D. (2020). Analysis of driver-pedestrian interactions at pedestrian crossings, In: Horváth, B.; Horváth, G. (szerk.) Proc. X. Nemzetközi Közlekedéstudományi Konferencia, Győr, 2020. október 29-30.
Botello, B., Buehler, R., Hankey, S., Mondschein, A., Jiang, Z. (2019). Planning for walking and cycling in an autonomousvehicle future. Transportation Research Interdisciplinary Perspectives, Volume 1, 100012 DOI: https://doi.org/gg68rw
Phetoudom, S., Makó E. (2020). Pedestrian’s behavioural adaptation to AVs and its effect on road capacity. In: Iványi, Péter (szerk.) Abstract book for the 16th Miklós Iványi International PhD & DLA Symposium. Pécs, Pollack Press, Paper: 78.
Commsignia (2020). Commsignia introduces new dual-radio roadside unit, Accessed February 10, 2020, https://www.commsignia.com/news/commsignia-introduces-new-dualradio-roadside-unit/
Borsos A.; Farah, H.; Laureshyn, A.; Hagenzieker, M. (2020). Are collision and crossing course surrogate safety indicators transferable? A probability based approach using extreme value theory. Accident analysis and prevention, Paper: 105517 DOI: https://doi.org/gjddz2
Mahmud, S. S., Ferreira, L., Hoque, M. S., and Tavassoli, A. (2017). Application of proximal surrogate indicators for safety evaluation: A review of recent developments and research needs. IATSS Research, 2017. 41:153–163 DOI: https://doi.org/gf9kms
Kizawi, A., Borsos, A. (2020). Conflict analysis of vehicle-pedestrian interactions In: Iványi, Péter (szerk.) Abstract book for the 16th Miklós Iványi International PhD & DLA Symposium. Pécs, Pollack Press, Paper: 80
Gaál, B., Horváth, B. (2019): Autonomous cars and urban land use - city shaping force? In: Horváth, G.; Gaál, B.; Horváth, B. (szerk.) Nemzetközi Közlekedéstudományi Konferencia, Győr.
Articles published electronically are open access (OJS), freely available online and can be downloaded. Authors of articles are not charged any publication or publishing costs (APC). Users have the right to read, download, copy, print, and search the articles, or share the full text with a link.
Authors must declare that their submission has not been previously published in another journal, that financial support has been acknowledged, and that the list of references is complete and accurate, including specification of URLs and DOIs (if available). When submitting a draft article, each author approves the submitted version. Authors guarantee that the article is their original work. Authors are required to participate in the peer review process, follow the advice of reviewers, meet the prescribed deadlines, and, if any, withdraw the submission or correct errors.
All submitted articles are subject to peer review, where the editors request an independent evaluation from at least one expert, ensuring that the reviewer(s) have no conflicts of interest with the authors. The final decision is made by the Editor-in-Chief, who takes into account the evaluations and the suggestions of the editors. The editors and reviewers treat the submission confidentially.
The publisher and editors are committed to maintaining high ethical standards and to preventing publications that involve research misconduct. They follow the COPE guidelines on such ethical issues.
The authors retain copyright and grant the journal the right of first publication under the Creative Commons License (https://creativecommons.org/licenses/by-nc-nd/4.0), which allows others to share the work, while acknowledging the authorship of the work and the first publication in the journal.
The journal archives all published articles, and the journal's owner, the Hungarian Society of Transportation Sciences, will continue to operate the database even if the journal ceases to be published.