Spatial estimation of urban vehicle traffic using kernel methods

  • Balázs Varga BME Közlekedésmérnöki és Járműmérnöki Kar, Közlekedés- és Járműirányítási Tanszék
  • Tamás Tettamanti BME Közlekedésmérnöki és Járműmérnöki Kar, Közlekedés- és Járműirányítási Tanszék
Keywords: Spatial estimation, kernel method, urban traffic

Abstract

The authors investigated methods that can be used to estimate traffic volumes on unmeasured road segments. To this end, a new distance metric has been developed based on the traffic volumes measured in different crosssections. Based on the time series of the detectors, measured in the past, their similarity can be quantified. By transforming the pairwise similarities thus obtained, they become suitable for the spatial estimation of vehicle traffic. Using this metric, two kernel-based methods have been presented.

References

Lawrence A. Klein, Milton K. Mills, and David R. P. Gibson. Traffic detector handbook: Volume I. No. FHWA-HRT-06-108. Turner-Fairbank Highway Research Center, 2006.

Yang Liu, and Ning Zhu. "A multi-objective detector location optimization approach." In CICTP 2014: Safe, Smart, and Sustainable Multimodal Transportation Systems, pp. 1788-1800, 2014. DOI: https://doi.org/gt4f

Jianming Hu, Jingyan Song, Mingchen Zhang, and Xiaojing Kang. Topology optimization for urban traffic sensor network.Tsinghua Science and Technology, 13(2):229–236, 4-7 July, 2014, Changsha, China. DOI: https://doi.org/b9xnnf

Haixiang Zou, Yang Yue, Qingquan Li, and Anthony G. Yeh. An improved distance metric for the interpolation of link-based traffic data using kriging:a case study of a large-scale urban road network.International Journal of Geographical Information Science, 26(4):667–689, 2012. DOI: https://doi.org/bd3633

Brent Selby and Kara M Kockelman. Spatial prediction of traffic levels inunmeasured locations: applications of universal kriging and geographicallyweighted regression.Journal of Transport Geography, 29:24–32, 2013. DOI: https://doi.org/f4vv3x

Bumjoon Bae, Hyun Kim, Hyeonsup Lim, Yuandong Liu, Lee D Han,and Phillip B Freeze. Missing data imputation for traffic flow speed us-ing spatio-temporal cokriging.Transportation Research Part C: EmergingTechnologies, 88:124–139, 2018. DOI: https://doi.org/gdbch3

Michael A. Cox and Trevor F Cox. Multidimensional scaling. In Handbook of data visualization, pages 315-347. Springer, 2008. DOI: https://doi.org/gt4h

Ian T Jolliffe. A note on the use of principal components in regression. Journal of the Royal Statistical Society: Series C (Applied Statistics), 31(3):300-303, 1982. DOI: https://doi.org/dw25m4

Rasmussen, C. E. “Gaussian processes in machine learning”, Springer, Berlin, Germany, 2003. DOI: https://doi.org/fhqcww

Noel Cressie. The origins of kriging. Mathematical geology, 22(3):239-252,1990.

Michael James Sasena. Flexibility and e_ciency enhancements for constrained global design optimization with kriging approximations. PhD thesis, University of Michigan

Weijermars, Wendy, and Eric Van Berkum. "Analyzing highway flow patterns using cluster analysis." IEEE Intelligent Transportation Systems, 2005. DOI: https://doi.org/dswz6d

How to Cite
VargaB., & TettamantiT. (1). Spatial estimation of urban vehicle traffic using kernel methods. Scientific Review of Transport, 71(5), 37-46. https://doi.org/10.24228/KTSZ.2021.5.3
Section
Articles