Determination of road vehicle motion model by constrained multiple model filtering procedures

  • Olivér BME Közlekedés- és Járműirányítási Tanszék
  • Tamás Bécsi BME Közlekedés- és Járműirányítási Tanszék
Keywords: constrained multiple model filtering procedures, road vehicle, motion model

Abstract

The paper presents a solution based on traditional methods for manoeuvring detection in road traffic. The method works in a multiple model structure with Kálmán filters and particle filters. Each manoeuver is defined and fitted into the elementary filters using different state constraints so that a unique filter is associated with each manoeuver. The multiple model structure evaluates the accuracy of the estimation of each filter and accepts the manoeuver associated with the better performing filter as current. The efficiency of the procedure is demonstrated in a simulated traffic situation where the observed object was examined from the perspective of the observation vehicle.

References

X. R. Li and V. P. Jilkov, “Survey of maneuvering target tracking. part v. multiple-model methods,” IEEE Transactions on Aerospace and Electronic Systems, vol. 41, no. 4, pp. 1255–1321, 2005. DOI: https://doi.org/fn8tfr

H. A. Blom and Y. Bar-Shalom, “The interacting multiple model algorithm for systems with markovian switching coefficients,” IEEE transactions on Automatic Control, vol. 33, no. 8, pp. 780–783, 1988. DOI: https://doi.org/cwbf76

E. Mazor, A. Averbuch, Y. Bar-Shalom, and J. Dayan, “Interacting multiple model methods in target tracking: a survey,” IEEE Transactions on aerospace and electronic systems, vol. 34, no. 1, pp. 103–123, 1998. DOI: https://doi.org/c9b8j9

Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with applications to tracking and navigation: theory algorithms and software. John Wiley & Sons, 2004. DOI: https://doi.org/dfqbsw

Z. Messaoudi, A. Ouldali, and M. Oussalah, “Comparison of interactive multiple model particle filter and interactive multiple model unscented particle filter for tracking multiple manoeuvring targets in sensors array,” in Cybernetic Intelligent Systems (CIS), 2010 IEEE 9th International Conference on. IEEE, 2010, pp. 1–6. DOI: https://doi.org/bbrxrf

M. Zhang and W. Chen, “Variable structure multiple model particle filter for maneuvering radar target tracking,” in Microwave and Millimeter Wave Technology (ICMMT), 2010 International Conference on. IEEE, 2010, pp. 1754-1757. DOI: https://doi.org/cvvkz2

Törő, O., Bécsi, T., Aradi, S. and Gáspár, P., 2018. Imm bernoulli filter for cooperative object tracking in road traffic. IFACPapersOnLine, 51(9), pp.355-360. DOI: https://doi.org/gt4j

Törő, O., Bécsi, T., Aradi, S. and Gáspár, P., 2018. IMM Bernoulli Gaussian Particle Filter. IFAC-PapersOnLine, 51(22), pp.274-279. DOI: https://doi.org/gt4k

D. Simon, Optimal state estimation : Kalman, H_∞ and nonlinear approaches. Hoboken, N.J: Wiley-Interscience, 2006. DOI: https://doi.org/bmzttv

Teixeira, B. O., Chandrasekar, J., Tôrres, L. A., Aguirre, L. A., & Bernstein, D. S. (2009). State estimation for linear and non-linear equality-constrained systems. International Journal of Control, 82(5), 918-936. DOI: https://doi.org/bfwshc

O. Törő, T. Bécsi, and S. Aradi, “Design of lane keeping algorithm of autonomous vehicle,” Periodica Polytechnica Transportation Engineering, vol. 44, no. 1, pp. 60–68, 2016. DOI: https://doi.org/ggfvvq

Z. Zhao, B. Huang, and F. Liu, “Constrained particle filtering methods for state estimation of nonlinear process,” AIChE Journal, vol. 60, no. 6, pp. 2072–2082, 2014. DOI: https://doi.org/gt4m

Chen, Z., 2003. Bayesian filtering: From Kalman filters to particle filters, and beyond. Statistics, 182(1), pp.1-69. DOI: https://doi.org/bkztpw

A. A. Saucan, T. Chonavel, C. Sintes, and J. M. L. Caillec, “Interacting multiple model particle filters for side scan bathymetry,” in 2013 MTS/IEEE OCEANS - Bergen, June 2013, pp. 1–5. DOI: https://doi.org/gt4n

How to Cite
Olivér, & BécsiT. (1). Determination of road vehicle motion model by constrained multiple model filtering procedures. Scientific Review of Transport, 71(6), 17-28. https://doi.org/10.24228/KTSZ.2021.6.2
Section
Articles