Akkumulátoros elektromos autóbuszok fogyasztásának becslése vonali jellemzők és hőmérséklet figyelembevételével

  • Péter Ákos Szilassy Budapesti Műszaki és Gazdaságtudományi Egyetem, Közlekedésmérnöki és Járműmérnöki Kar, Közlekedéstechnológiai és Közlekedésgazdasági Tanszék; KTI – Magyar Közlekedéstudományi és Logisztikai Intézet Nonprofit Kft.
  • Dávid Dr. Földes Budapesti Műszaki és Gazdaságtudományi Egyetem, Közlekedésmérnöki és Járműmérnöki Kar, Közlekedéstechnológiai és Közlekedésgazdasági Tanszék
Kulcsszavak: Közúti közlekedés, közforgalmú közösségi közlekedés, akkumulátoros busz

Absztrakt

Az elektromos autóbuszok alkalmazhatósága korlátozott, ezért szükséges olyan módszerek kidolgozása, amelyek alkalmasak az az elektromos autóbuszok útvonalszakaszaira vonatkoztatott energiaigények becsléséhez, segítve a fordatervezést is.

Hivatkozások

Borén, S., 2019. Electric buses’ sustainability effects, noise, energy use, and costs. International Journal of Sustainable Transportation, 1–16. DOI: https://doi.org/gh79d5

Kang, H., 2007. An analysis of hybridelectric vehicles as the car of the future, Doktori disszertáció - Massachusetts Institute of Technology, Dept. of Mechanical Engineering,

Laib, F., Braun, A., & Rid, W., 2019. Modelling noise reductions using electric buses in urban traffic. A case study from Stuttgart, Germany. Transportation Research Procedia, 37, 377–384. DOI: https://doi.org/gf8zfj

Poojitganont, T., Antoshkiv, O., Watjatrakul, B., & Berg, H. P., 2020. Efficiency and emission simulations of hydrogen-fuel city buses. IOP Conference Series. Materials Science and Engineering, 886, 012025. DOI: https://doi.org/jrsm

C40 mayors air quality commitment 2016. C40 Mayors Summit in Mexico City

Lajunen, A., 2014. Energy consumption and cost-benefit analysis of hybrid and electric city buses, Transportation research. Part C, Emerging technologies, 38, pp. 1–15. DOI: https://doi.org/f5sz4r

Potkány, M., Hlatká, M., Debnár, M., & Hanzl, J., 2018. Comparison of the lifecycle cost structure of electric and diesel buses. Nase More, 65(4), 270–275. DOI: https://doi.org/jrsn

Quarles, N., Kockelman, K. M., & Mohamed, M., 2020. Costs and benefits of electrifying and automating bus transit fleets. Sustainability, 12(10), 3977. DOI: https://doi.org/gpx6fr

Sheth, A., & Sarkar, D., 2019a. Life cycle cost analysis for electric vs. Diesel bus transit in an Indian scenario. International Journal of Technology, 10(1), 105. DOI: https://doi.org/gmj3jn

Szilassy, P. Á., Jenőfi, B. and Földes, D. 2022. Marginal energy consumption cost factors of battery electric buses, Smart City Symposium Prague (SCSP) 2022, DOI: https://doi.org/jrsp

Ehsani, M., Gao, Y., Gay, S. E., & Emadi, A., 2004. Modern Electric, Hybrid Electric, and Fuel Cell Vehicles. CRC Press. DOI: https://doi.org/dkjc8q

Basma, H., Mansour, C., Haddad, M., Nemer, M., & Stabat, P., 2020. Comprehensive energy modeling methodology for battery electric buses. Energy (Oxford, England), 207(118241), 118241.

Vepsäläinen, J., Ritari, A., Lajunen, A., Kivekäs, K., & Tammi, K., 2018. Energy uncertainty analysis of electric buses. Energies, 11(12), 3267. DOI: https://doi.org/jrsr

Fernandes H., 2018. Electric bus performance evaluation in real world use conditions, Doktori disszertáció, University of Lisbon, link: https://fenix.tecnico.ulisboa.pt/downloadFile/1126295043836122/ExtendedAbstract_76209.pdf

Marshall, G. J., Mahony, C. P., Rhodes, M. J., Daniewicz, S. R., Tsolas, N., & Thompson, S. M., 2019. Thermal management of vehicle cabins, external surfaces, and onboard electronics: An overview. Engineering (Beijing, China), 5(5), 954–969. DOI: https://doi.org/gg3x2f

Li, L., & Liu, Q., 2019. Acceleration curve optimization for electric vehicle based on energy consumption and battery life. Energy (Oxford, England), 169, 1039–1053. DOI: https://doi.org/gjp5b5

Perrotta, D., Ribeiro, B., Rossetti, R. J. F., & Afonso, J. L., 2012. On the potential of regenerative braking of electric buses as a function of their itinerary. Procedia, Social and Behavioral Sciences, 54, 1156–1167. DOI: https://doi.org/jrss

Zhang, Y., Yuan, W., Fu, R., & Wang, C., 2019. Design of an energy-saving driving strategy for electric buses. IEEE Access: Practical Innovations, Open Solutions, 7, 157693–157706. DOI: https://doi.org/jrst

Kirchner, M., Schubert, P., & Haas, C. T., 2014. Characterisation of real-world bus acceleration and deceleration signals. Journal of Signal and Information Processing, 05(01), 8–13. DOI: https://doi.org/jrsv

Corazza, M., Conti, V., Genovese, A., Ortenzi, F., & Valentini, M. P., 2021. A procedure to estimate air conditioning consumption of urban buses related to climate and main operational

characteristics. World Electric Vehicle Journal, 12(1), 29. DOI: https://doi.org/jrsw

Göhlich, D., Ly, T.-A., Kunith, A., & Jefferies, D., 2015. Economic assessment of different air-conditioning and heating systems for Electric City buses based on comprehensive energetic simulations. World Electric Vehicle Journal, 7(3), 398–406. DOI: https://doi.org/gn3767

He, H., Yan, M., Sun, C., Peng, J., Li, M., & Jia, H., 2018. Predictive air-conditioner control for electric buses with passenger amount variation forecast. Applied Energy, 227, 249–261. DOI: https://doi.org/gfdw5f

Beckers, C. J. J., Besselink, I. J. M., Frints, J. J. M., & Nijmeijer, H., 2019. Energy consumption prediction for electric city buses. Paper presented at 13th ITS European Congres, Eindhoven, Netherlands

Bartłomiejczyk, M., & Kołacz, R., 2020. The reduction of auxiliaries power demand: The challenge for electromobility in public transportation. Journal of Cleaner Production, 252(119776), 119776. DOI: https://doi.org/gmqdp3

Csonka, B., 2021. Optimization of Static and Dynamic Charging Infrastructure for Electric Buses. Energies, 14(12), 3516. DOI: https://doi.org/jrsx

Lindh, P., Petrov, I., Pyrhonen, J., Niemela, M., Immonen, P., & Scherman, E., 2018. Direct liquid cooling method verified with a permanent-magnet traction motor in a bus. 2018 XIII International Conference on Electrical Machines (ICEM).

Nandi, A. K., Mondal, S., & Khanra, M., 2021. Modelling of electric vehicle drive toward its range prediction and remaining battery SOC after trip completion. International Journal of Electric and Hybrid Vehicles, 13(2), 145. DOI: https://doi.org/jrsz

Braess, H.-H., & Seiffert, U., Eds., 2013. Vieweg Handbuch Kraftfahrzeugtechnik (7th ed.). Springer Fachmedien.

Tretsiak, D., Häberlein, T., & Bäker, B., 2016. Energy efficient control of the air compressor in a serial hybrid bus based on smart data. IFAC-PapersOnLine, 49(11), 385–392. DOI: https://doi.org/jrs2

Mio, T., Komatsubara, Y., Ohmi, N., Kimoto, Y., Iizuka, K., Suganuma, T., Maruyama, S., Sugiyama, T., Sato, F., Shinoda, S., Hibino, T., & Nishi, K., 2019. Auxiliary power supply system for electric power steering (EPS) and high-heat-resistant lithium-ion capacitor. World Electric Vehicle Journal,10(2), 27. DOI: https://doi.org/jrs3

Andersson, Ch., 2004. On auxiliary systems in commercial vehicles, Doktori disszertáció, Lund University, link: https://www.iea.lth.se/publications/theses/lth-iea-1039.pdf

Fischer, M., Werber, M., & Schwartz, P. V., 2009. Batteries: Higher energy density than gasoline? Energy Policy, 37(7), 2639–2641. DOI: https://doi.org/fj6m44

Boudhrioua, S., & Sipos, T., 2022. Dwell time analysis and priority granting for bus service in Budapest. Periodica Polytechnica Transportation Engineering. DOI: https://doi.org/jrs4

Hawas, Y., 2013. Simulation-based regression models to estimate bus routes and network travel times. Journal of Public Transportation, 16(4), 107.130. DOI: https://doi.org/jrs5

Boren, S., 2019. Electric busesf sustainability effects, noise, energy use, and costs. International Journal of Sustainable Transportation, 1.16. DOI: https://doi.org/gh79d5

Dirks, N., Schiffer, M. and Walther, G., 2022. On the integration of battery electric buses into urban bus networks, Transportation research. Part C, Emerging technologies, 139(103628), p. 103628. DOI: https://doi.org/jrs6

Edwardes, W., & Rakha, H., 2015. Modeling diesel and hybrid bus fuel consumption with Virginia Tech comprehensive powerbased fuel consumption model: Model enhancements and calibration issues: Model enhancements and calibration issues. Transportation Research Record, 2533(1), 100.108. DOI: https://doi.org/jrs7

Garcia, A., Monsalve-Serrano, J., Lago Sari, R., & Tripathi, S., 2022. Life cycle CO. footprint reduction comparison of hybrid and electric buses for bus transit networks. Applied Energy, 308(118354), 118354. DOI: https://doi.org/jrs8

Kang, H., 2008. An analysis of hybridelectric vehicles as the car of the future, BSc szakdolgozat, Massachusetts Institute of Technology, link: http://electric-vehicles.info/library/these/these029.pdf

Lee, J., Shon, H., Papakonstantinou, I., & Son, S., 2021. Optimal fleet, battery, and charging infrastructure planning for reliable electric bus operations. Transportation Research. Part D, Transport and Environment, 100(103066), DOI: https://doi.org/jrs9

Muratori, M., Alexander, M., Arent, D., Bazilian, M., Cazzola, P., Dede, E. M., Farrell, J., Gearhart, C., Greene, D., Jenn, A., Keyser, M., Lipman, T., Narumanchi, S., Pesaran, A., Sioshansi, R., Suomalainen, E., Tal, G., Walkowicz, K., & Ward, J., 2021. The rise of electric vehicles.2020 status and future expectations. Progress in Energy, 3(2), 022002. DOI: https://doi.org/gpcngz

Oliva, J. A., Weihrauch, C., & Bertram, T., 2013. Model-based remaining driving range prediction in electric vehicles by using particle filtering and Markov chains. World Electric Vehicle Journal, 6(1), 204. 213. DOI: https://doi.org/jrtb

Qiu, Q., Li, J., & Yu, H., 2013. Operational planning of electric bus considering battery state of charge. In LTLGB 2012 (pp. 243. 249). Springer Berlin Heidelberg. DOI: https://doi.org/jrtc

Sheth, A., & Sarkar, D., 2019a. Life cycle cost analysis for electric vs. Diesel bus transit in an Indian scenario. International Journal of Technology, 10(1), 105. DOI: https://doi.org/gmj3jn

Vepsalaenen, J., 2017. Driving style comparison of city buses: Electric vs. Diesel. 2017 IEEE Vehicle Power and Propulsion Conference (VPPC). DOI: https://doi.org/jrtd

ZeEUS, 2017. Zeeus ebus report #2. URL: https://zeeus.eu/uploads/publications/documents/zeeus-ebus-report-2.pdf , (Utolso eleres: 2022. julius).

Kozuti Rendelkezesek Egyseges Szabalyozasa (KRESZ) - 46.§ Szemelyszallitas

Megjelent
2023-02-15
Hogyan kell idézni
SzilassyP. Ákos, & Dr. FöldesD. (2023). Akkumulátoros elektromos autóbuszok fogyasztásának becslése vonali jellemzők és hőmérséklet figyelembevételével. Közlekedéstudományi Szemle, 73(1), 38-56. https://doi.org/10.24228/KTSZ.2023.1.3
Folyóirat szám
Rovat
Közúti közlekedés