Hogyan igazodjunk el a mesterséges intelligencia munkaerőpiaci hatásait övező zajban?
Absztrakt
Az írás a szakirodalom kritikai elemzésével és anekdotikus példákkal mutatja be a mesterséges intelligencia (AI) munkaerőpiacra gyakorolt hatásának értékelését nehezítő „zajt”. Elemzi az AI fejlődésének időbeli alakulásával, a humán munkaerőt helyettesítő képességével, valamint a termelékenységi és a képességkülönbségeket kiegyenlítő hatásával kapcsolatos, egymásnak ellentmondó következtetéseket és előrejelzéseket. Bemutatja, hogy bár az AI páratlanul gyors fejlődése következtében egyre több feladat automatizálható, az AI-alapmodellek elvi képességei és az automatizálható munkafeladatok tényleges automatizálása közötti összefüggés nem lineáris. A technológia foglalkoztatási hatása munkakörönként eltérő módon és számos tényező kölcsönhatásának eredményeként alakul majd. A tanulmány a munkagazdaságtan „skill-biased technological change” tételét, a munkaerőpiaci keresletnek a technológiai fejlődés hatására bekövetkező, a képzettek javára történő eltolódását kimondó tételt az AI korszakára alkalmazza. Megállapítja, hogy mivel a diplomás munkaerő által végzett tudásigényes feladatok automatizálása egyre könnyebb, és az automatizálható feladatok száma gyorsan bővül, az AI ezúttal a magasan képzettek körén belül vált ki hasonló hatást. A kereslet várhatóan nemcsak a tapasztalatlan frissdiplomások, hanem általában az alacsony-közepes képességű diplomások iránt is csökkenni fog. A felsőfokú képzettséget igénylő munkakörökben páratlan mértékben felerősödik az állásokért folytatott verseny. A legkiválóbbak választódnak ki, ami egyúttal azt jelenti, hogy a csupán jó (korrekt) teljesítményt nyújtó diplomás foglalkoztatottak – társadalmi és egyéni szinten egyaránt jelentős ráfordításokkal megszerzett – képzettségét és képességeit az AI elértékteleníti. A képzettség elértéktelenedése az oktatási rendszer jelen szerkezetének válságát vetíti előre, az elértéktelenedő képességek pedig egyéni (identitásbeli és egzisztenciális) és társadalmi válságot.
Hivatkozások
Acemoglu, D. (2002). Technical change, inequality, and the labor market. Journal of Economic Literature, 40(1), 7–72. https://doi.org/10.1257/0022051026976
Acemoglu, D. (2025). The simple macroeconomics of AI. Economic Policy, 40(121), 13–58. https://doi.org/10.1093/epolic/eiae042
Acemoglu, D., & Restrepo, P. (2019). Artificial intelligence, automation, and work. In The Economics of Artificial Intelligence: An Agenda. University of Chicago Press, pp. 197–236.
Agrawal, A. K., Gans, J. S., & Goldfarb, A. (2025). The Economics of bicycles for the mind (NBER Working Paper, No. 34034). National Bureau of Economic Research. https://doi.org/10.2139/ssrn.5347891
Anthropic (2024). The Claude 3 Model Family: Opus, Sonnet, Haiku. https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
Autor, D. H. (2015). Why are there still so many jobs? The history and future of workplace automation. Journal of Economic Perspectives, 29(3), 3–30. https://doi.org/10.1257/jep.29.3.3
Autor, D. H. (2025). David Autor on AI and the future of work. VoxDev Talk. https://voxdev.org/topic/technology-innovation/david-autor-ai-and-future-work
Autor, D. H., Katz, L. F., & Krueger, A. B. (1998). Computing inequality: have computers changed the labor market? The Quarterly Journal of Economics, 113(4), 1169–1213. https://doi.org/10.1162/003355398555874
Autor, D. H., Levy, F., & Murnane, R. J. (2003). The skill content of recent technological change: An empirical exploration. The Quarterly Journal of Economics, 118(4), 1279–1333. https://doi.org/10.1162/003355303322552801
Autor, D., & Thompson, N. (2025). Expertise. Journal of the European Economic Association, 23(4), 1203–1271. https://doi.org/10.1093/jeea/jvaf023
Baily, M. N., Brynjolfsson, E., & Korinek, A. (2023). Machines of mind: The case for an AI-powered productivity boom. The Brookings Institution. https://www.brookings.edu/articles/machines-of-mind-the-case-for-an-ai-powered-productivity-boom/
Baumol, W. J. (1967). Macroeconomics of unbalanced growth: the anatomy of urban cri-sis. The American Economic Review, 57(3), 415–426. https://www.jstor.org/stable/1812111
Becker, J., Rush, N., Barnes, E., & Rein, D. (2025). Measuring the impact of early-2025 AI on experienced open-source developer productivity. https://arxiv.org/pdf/2507.09089
Berkhout, P. H., Muskens, J. C., & Velthuijsen, J. W. (2000). Defining the rebound effect. Energy Policy, 28(6-7), 425–432. https://doi.org/10.1016/S0301-4215(00)00022-7
Bessen, J. (2019). Automation and jobs: When technology boosts employment. Economic Policy, 34(100), 589–626. https://doi.org/10.1093/epolic/eiaa001
Bick, A., Blandin, A., & Deming, D. J. (2024). The rapid adoption of generative AI (NBER Working Paper, No. 32966). National Bureau of Economic Research. https://doi.org/10.
/ssrn.4964384
Boncz, B., & Szabó, Z. R. (2022). A mesterséges intelligencia munkaerő-piaci hatásai. Hogyan készüljünk fel? Vezetéstudomány, 53(2), 68–80. https://doi.org/10.14267/VEZTUD.2022.02.06
Bonney, K., Breaux, C., Buffington, C., Dinlersoz, E., Foster, L., Goldschlag, N., Haltiwanger, J., Kroff, Z., & Savage, K. (2024). The impact of AI on the workforce: Tasks versus jobs? Economics Letters, 244, 111971. https://doi.org/10.1016/j.econlet.2024.111971
Brynjolfsson, E., Rock, D., & Syverson, C. (2017). Artificial intelligence and the modern productivity paradox: A clash of expectations and statistics (NBER Working Paper, No. 24001). National Bureau of Economic Research. https://doi.org/10.3386/w24001
Brynjolfsson, E., Chandar, B., & Chen, R. (2025). Canaries in the coal mine? Six facts about the recent employment effects of Artificial Intelligence. https://digitaleconomy.stanford.edu/wp-content/uploads/2025/08/Canaries_BrynjolfssonChandarChen.pdf
Brynjolfsson, E., Li, D., & Raymond, L. (2025). Generative AI at work. The Quarterly Journal of Economics, 140(2), 889–942. https://doi.org/10.1093/qje/qjae044
Business Insider (2025). Sam Altman explains why AI will replace 40% of your work. https://www.businessinsider.com/sam-altman-explains-ai-will-replace-40-of-your-work-2025-9
Campbell, D. (2024). Online GP consultations have led to harm and death, investigation finds. The Guardian. https://www.theguardian.com/society/article/2024/jul/25/online-gp-consultations-have-led-to-harm-and-death-investigation-finds
Cerullo, M. (2024). Waymo’s driverless cars honk at each other, waking neighbors. CBS News. https://www.cbsnews.com/news/waymos-driverless-cars-honking-san-francisco/
Challapally, A., Pease, C., Raskar, R., & Chari, P. (2025). The GenAI divide: State of AI in business 2025. https://www.artificialintelligence-news.com/wp-content/uploads/2025/08/ai_report_2025.pdf
Chandar, B. (2025). Tracking employment changes in AI-exposed jobs. https://doi.org/10.2139/ssrn.5384519
Chollet, F., Knoop, M., Kamradt, G., Landers, B., & Pinkard, H. (2025). Arc-agi-2: A new challenge for frontier AI reasoning systems. https://arxiv.org/pdf/2505.11831?
Comin, D. A., Hobijn, B., & Rovito, E. (2006). Five facts you need to know about technology diffusion (NBER Working Paper, No. 11928). National Bureau of Economic Research. https://ssrn.com/abstract=876031
Conte, N. (2025). Mapped: Global income level classification by country. https://www.visualcapitalist.com/global-income-level-classification-by-country-gni/#:~:text=The%20World%20Bank%20lists%2087%20high%20income,territories%20brings%20the%20broader%20total%20to%2093
Csaszar, F. A., Ketkar, H., & Kim, H. (2024). Artificial intelligence and strategic decision-making: Evidence from entrepreneurs and investors. Strategy Science, 9(4), 322–345. https://doi.org/10.1287/stsc.2024.0190
David, P. A. (1990). The dynamo and the computer: an historical perspective on the modern productivity paradox. The American Economic Review, 80(2), 355–361. https://www.jstor.org/stable/2006600
Dell’Acqua, F., McFowland III, E., Mollick, E. R., Lifshitz-Assaf, H., Kellogg, K., Rajendran, S., Krayer, L., Candelon, F., & Lakhani, K. R. (2023). Navigating the jagged technological frontier: Field experimental evidence of the effects of AI on knowledge worker productiv-ity and quality (Harvard Business School Technology & Operations Management Unit Working Paper, No. 13). Harvard Business School. https://doi.org/10.2139/ssrn.4573321
Deroover, K., Knight, S., Burke, P. F., & Bucher, T. (2023). Why do experts disagree? The development of a taxonomy. Public Understanding of Science, 32(2), 224–246. https://doi.org/10.1177/09636625221110029
Dominski, J., & Lee, Y. S. (2025). Advancing AI capabilities and evolving labor outcomes. https://arxiv.org/pdf/2507.08244
Drago, L., & Laine, R. (2025). The intelligence curse. https://intelligence-curse.ai/
Duffy, C. (2025). Why this leading AI CEO is warning the tech could cause mass unemploy-ment. CNN. https://edition.cnn.com/2025/05/29/tech/ai-anthropic-ceo-dario-amodei-
unemployment
Eckhardt, S., & Goldschlag, N. (2025). AI and jobs: The final word (until the next one). Eco-nomic Innovation Group. https://eig.org/ai-and-jobs-the-final-word/
Economist (2025a). How AI will divide the best from the rest. The Economist. https://www.economist.com/finance-and-economics/2025/02/13/how-ai-will-divide-the-best-from-the-rest
Economist (2025b). Why today’s graduates are screwed. The Economist. https://www.economist.com/finance-and-economics/2025/06/16/why-todays-graduates-are-screwed
Economist (2025c). Who needs Accenture in the age of AI? The Economist. https://www.economist.com/business/2025/06/26/who-needs-accenture-in-the-age-of-ai
Eloundou, T., Manning, S., Mishkin, P., & Rock, D. (2024). GPTs are GPTs: Labor market impact potential of LLMs. Science, 384(6702), 1306–1308. https://doi.org/10.1126/science.adj0998
Eyo-Udo, N. l. (2024). Leveraging artificial intelligence for enhanced supply chain optimi-zation. Open Access Research Journal of Multidisciplinary Studies, 7(2), 1–15. https://doi.org/10.53022/oarjms.2024.7.2.0044
Fang, L., Yuan, Z., Zhang, K., Donati, D., & Sarvary, M. (2025). Generative AI and firm productivity: Field experiments in online retail. https://arxiv.org/pdf/2510.12049
Felten, E., Raj, M., & Seamans, R. (2021). Occupational, industry, and geographic exposure to artificial intelligence: A novel dataset and its potential uses. Strategic Management Journal, 42(12), 2195–2217. https://doi.org/10.1002/smj.3286
Feyerabend, P. (1975). Against method: Outline of an anarchistic theory of knowledge. Verso Books.
Filippucci, F., Gal, P., & Schief, M. (2024). Miracle or myth? Assessing the macroeconomic productivity gains from Artificial Intelligence (OECD Artificial Intelligence Paper, No. 29). OECD Publishing. https://doi.org/10.1787/b524a072-en
Gans, J. (2025). Radiologists are the canaries in the coal mine. Joshua Gans’ Newsletter. https://joshuagans.substack.com/p/radiologists-are-the-canaries-in
Gimbel, M., Kinder, M., Kendall, J., Lee, M. (2025). Evaluating the impact of AI on the labor market: Current state of affairs. Budgetlab, Yale University. https://budgetlab.yale.edu/research/evaluating-impact-ai-labor-market-current-state-affairs
Goldin, C., & Katz, L. F. (1998). The origins of technology-skill complementarity. The Quar-terly Journal of Economics, 113(3), 693–732. https://doi.org/10.1162/003355398555720
Goos, M., Manning, A., & Salomons, A. (2009). Job polarization in Europe. American Eco-nomic Review, 99(2), 58–63. https://doi.org/10.1257/aer.99.2.58
Goos, M., Manning, A., & Salomons, A. (2014). Explaining job polarization: Routine-biased technological change and offshoring. American Economic Review, 104(8), 2509–2526. https://doi.org/10.1257/aer.104.8.2509
Greve, H. R., & Seidel, M. D. L. (2025). Innovation diffusion uncertainty: incremental and radical innovations compared. Industrial and Corporate Change, dtaf025, https://doi.org/10.1093/icc/dtaf025
Guzik, E. E., Byrge, C., & Gilde, C. (2023). The originality of machines: AI takes the Torrance Test. Journal of Creativity, 33(3), 100065. https://doi.org/10.1016/j.yjoc.2023.100065
HAI Stanford (2025). Artificial Intelligence Index Report 2025. Stanford University Human-Centered Artificial Intelligence. https://hai.stanford.edu/assets/files/hai_ai_index_report_2025.pdf
Handa, K., Tamkin, A., McCain, M., Huang, S., Durmus, E., Heck, S., Mueller, J., Hong, J., Ritchie, S., Belonax, T., Troy, K. K., Amodei, D., Kaplan, J., Clark, J., & Ganguli, D. (2025). Which economic tasks are performed with AI? Evidence from millions of Claude conversa-tions. https://arxiv.org/pdf/2503.04761
Hendrycks, D., Mazeika, M., & Woodside, T. (2023). An overview of catastrophic AI risks. https://arxiv.org/pdf/2306.12001
Horton, R., Michalski, J., Winters, S., Gunn, D., & Holland, J. (2025). AI ROI: the paradox of rising investment and elusive returns. Deloitte. https://www.deloitte.com/nl/en/issues/generative-ai/ai-roi-the-paradox-of-rising-investment-and-elusive-returns.html
Hosseini Maasoum, S. M., & Lichtinger, G. (2025). Generative AI as seniority-biased tech-nological change: Evidence from US résumé and job posting data. https://doi.org/10.2139/ssrn.5425555
Hubert, K. F., Awa, K. N., & Zabelina, D. L. (2024). The current state of artificial intelligence generative language models is more creative than humans on divergent thinking tasks. Scientific Reports, 14(1), 3440. https://doi.org/10.1038/s41598-024-53303-w
Hulten, C. R. (1978). Growth accounting with intermediate inputs. The Review of Economic Studies, 45(3), 511–518. https://doi.org/10.2307/2297252
Humlum, A., & Vestergaard, E. (2025). Large language models, small labor market effects (NBER Working Paper, No. 33777). National Bureau of Economic Research. https://doi.org/10.2139/ssrn.5250742
Jockims, T. L. (2025). AI is not just ending entry-level jobs. It’s the end of the career ladder as we know it. CNBC. https://www.cnbc.com/2025/09/07/ai-entry-level-jobs-hiring-careers.html
Kahneman, D., Sibony, O., & Sunstein, C. R. (2021). Zaj – Az emberi döntéshozatalt zavaró tényezők. HVG Könyvek. (Fordította: Garai Attila.)
Keding, C. (2021). Understanding the interplay of artificial intelligence and strategic man-agement: four decades of research in review. Management Review Quarterly, 71(1), 91–134. https://doi.org/10.1007/s11301-020-00181-x
Klein Teeselink, B. (2025). Generative AI and labor market outcomes: Evidence from the United Kingdom. https://doi.org/10.2139/ssrn.5516798
Kokotajlo, D., Alexander, S., Larsen, T., Lifland, E., & Dean, R. (2025). AI 2027. https://ai-2027.com
Korinek, M. A., Schindler, M. M., & Stiglitz, J. (2021). Technological progress, artificial intel-ligence, and inclusive growth (IMF Working Paper, No. 166). International Monetary Fund. https://doi.org/10.1093/oso/9780192846938.003.0005
Kuhn, T. S. (1962). The structure of scientific revolutions. University of Chicago.
Kulveit, J., Douglas, R., Ammann, N., Turan, D., Krueger, D., & Duvenaud, D. (2025). Gradual disempowerment: Systemic existential risks from incremental AI development. https://arxiv.org/pdf/2501.16946
Kyung-Tak, L. (2025). AI automation prompts significant layoffs in India and Philippines’ outsourcing sectors. The Chosun Daily. https://biz.chosun.com/en/en-it/2025/08/27/GX3E5DI6CNAD5BFSUUAFVVTAK4/
Lettink, A. (2025). The 2025 graduate job crisis. It’s not AI. https://anitalettink.com/futureofwork/the-2025-graduate-jobs-crisis-its-not-ai/
Liu, Y., & Wang, H. (2024). Who on Earth is using generative AI? (Policy Research Working Paper, No. 10870). The World Bank. https://dx.doi.org/10.2139/ssrn.5495020
Lohr, S. (2025). Your A.I. radiologist will not be with you soon. The New York Times. https://www.nytimes.com/2025/05/14/technology/ai-jobs-radiologists-mayo-clinic.html
Maclean, D. (2025). AI’s ROI reality check: Are companies measuring what matters? Forbes. https://www.forbes.com/sites/forbes-research/2025/10/08/ai-roi-measurement-challenges-forbes-survey-2025/
Marcus, G. (2020). The next decade in AI: four steps towards robust artificial intelligence. https://arxiv.org/pdf/2002.06177
Martin, M. (2025). Educated but unemployed, a rising reality for college grads. Oxford Economics. https://www.oxfordeconomics.com/wp-content/uploads/2025/05/US-Educated-
but-unemployed-a-rising-reality-for-college-grads.pdf
McElheran, K., Yang, M. J., Kroff, Z., & Brynjolfsson, E. (2025). The Rise of Industrial AI in America: Microfoundations of the Productivity J-curve (s) (Working Paper, No. 25–27). Center for Economic Studies, U.S. Census Bureau. https://doi.org/10.2139/ssrn.5036270
Merchant, B. (2025). Blood in the machine. https://www.bloodinthemachine.com/s/ai-killed-my-job
Microsoft (2025). Generative AI delivering substantial ROI to businesses integrating the technology across operations: Microsoft-sponsored IDC report. https://news.microsoft.com/en-xm/2025/01/14/generative-ai-delivering-substantial-roi-to-businesses-integrating-
the-technology-across-operations-microsoft-sponsored-idc-report/
Mikalef, P., & Gupta, M. (2021). Artificial intelligence capability: Conceptualization, meas-urement calibration, and empirical study on its impact on organizational creativity and firm performance. Information & Management, 58(3), 103434. https://doi.org/10.1016/j.im.2021.103434
Narayanan, A., & Kapoor, S. (2025). AI as normal technology. An alternative to the vision of AI as a potential superintelligence. Knight First Amendment Institute, Columbia University. https://thedocs.worldbank.org/en/doc/d6e33a074ac9269e4511e5d44db2f9ac-0050022025/original/AI-as-Normal-Technology-Narayanan-Kapoor-Final.pdf
Niederhoffer, K., Rosen Kellerman, G., Lee, A., Liebscher, A., Rapuano, K., & Hancock, J. T. (2025). AI-generated “workslop” is destroying productivity. Harvard Business Review, https://hbr.org/2025/09/ai-generated-workslop-is-destroying-productivity
Noy, S., & Zhang, W. (2023). Experimental evidence on the productivity effects of generative artificial intelligence. Science, 381(6654), 187–192. https://doi.org/10.1126/science.adh2586
Patwardhan, T., Dias, R., Proehl, E., Kim, G., Wang, M., Watkins, O., Posada Fishman, S., Aljubeh, M., Thacker, P., Fauconnet, L., Kim, N. S., Chao, P., Miserendino, S., Chabot, G., Li, D., Sharman, M., Barr, A., Glaese, A., & Tworek, J. (2025). GDPVal: Evaluating AI Model Performance on Real-World Economically Valuable Tasks. https://openai.com/index/gdpval/
Phan, L., Gatti, A., Han, Z., Li, N., Hu, J., Zhang, H., Zhang, C. B. C., Shaaban, M., Ling, J., Shi, S., Choi, M., Agrawal, A., Chopra, A., Khoja, A., Kim, R., Ren, R., Hausenloy, J., Zhang, O., Mazejka, M., Yue, S., Wang, A., & Hendrycks, D. (2025). Humanity’s last exam. https://arxiv.org/pdf/2501.14249
Reiss, J. (2020). Why do experts disagree? Critical Review, 32(1-3), 218–241. https://doi.org/
1080/08913811.2020.1872948
Richter, F. (2025). Services no longer required: Which jobs are most at risk? https://www.statista.com/chart/30161/decline-in-employment-levels-in-selected-occupations-by-2031/?srsltid=
AfmBOoq8DZocbLZIUR3YGcxyGpRsCvyWBF4xydyxvUOf71M9yD1AVAHy
Schneider, B., & Vipond, H. (2023). The past and future of work: How history can inform the age of automation (CESifo Working Paper, No. 10766). ifo Institute. https://www.ifo.de/DocDL/cesifo1_wp10766.pdf
Smith, N. (2025). AI and jobs, again. Noahpinion. https://www.noahpinion.blog/p/ai-and-jobs-again?utm_source=profile&utm_medium=reader2
Stanger, A., Kraus, J., Lim, W., Millman-Perlah, G., & Schroeder, M. (2024). Terra incognita: the governance of artificial intelligence in global perspective. Annual Review of Political Science, 27(1), 445–465. https://doi.org/10.1146/annurev-polisci-041322-042247
Stinebrickner-Kauffman, T. (2025). First, they came for the software engineers… Second Thoughts. https://secondthoughts.ai/p/first-they-came-for-the-software
Susskind, D. (2020). A world without work: Technology, automation and how we should respond. Penguin UK.
Szalavetz, A. (2019). Mesterséges intelligencia és technológiavezérelt termelékeny-ségemelkedés. Külgazdaság, 63(7-8), 53–79. https://doi.org/10.47630/KULG.2019.63.7-8.53
Teece, D. J. (1986). Profiting from technological innovation. Research Policy, 15(6), 285–305.
Thompson, D. (2025). Something alarming is happening to the job market. The Atlantic. https://www.theatlantic.com/economy/archive/2025/04/job-market-youth/682641/
Ulin, M. (2025). I put AI forecasting to the test on 100 real markets, here’s what actually happened. Pioneering Thoughts. https://pioneeringthoughts.substack.com/p/i-put-ai-forecasting-to-the-test
Van Ark, B. (2016). The productivity paradox of the new digital economy. International Productivity Monitor, 31, 3–18.
Vengattil, M., & Kalra, A. (2025). Meet the AI chatbots replacing India’s call-center workers. Reuters. https://www.reuters.com/world/india/meet-ai-chatbots-replacing-indias-call-center-workers-2025-10-15/
Vidgen, B., Fennelly, A., Pinnix, E., Mahapatra, C., Richards, Z., Bridges, A., Huang, C., Hunsberger, B., Zafar, F., Foody, B., Barton, B., Sunstein, C. R., Topol, E., & Nitski, O. (2025). The AI Productivity Index (APEX). https://doi.org/10.48550/arXiv.2509.25721
Wang, P., & Wong, T. N. (2025). Artificial intelligence and technological unemployment (NBER Working Paper, No. 33867). National Bureau of Economic Research. https://ssrn.com/abstract=5278370
Waymo (2025). Do autonomous vehicles outperform latest-generation human-driven vehicles? A comparison to Waymo’s auto liability insurance claims at 25 million miles. Waymo. https://waymo.com/research/do-autonomous-vehicles-outperform-latest-generation-human-driven-vehicles-25-million-miles/
Wesdorp, K. (2025). Future trends in AI-powered radiology. DeepHealth. https://deephealth.com/insights/future-trends-in-ai-powered-radiology/#_ftnref3
Wiggs, J. (2024). Can artificial intelligence cause medical errors? This MIT researcher shows it can. The Boston Globe. https://www.bostonglobe.com/2025/08/27/business/mit-ai-medical-errors-bias/
Yudkowsky, E., & Soares, N. (2025). If anyone builds it, everyone dies. Little Brown.
Zuboff, S. (1988). In the Age of the Smart Machine: The Future of Work and Power. Basic Books.





