Cutting through the noise about the impact of AI on employment

  • Andrea Szalavetz EL TE KRTK Világgazdasági Intézet
Keywords: artificial intelligence, technological unemployment, cognitive routine tasks, skill-biased technological change

Abstract

The paper presents a critical analysis of the literature and anecdotal examples to illustrate the ‘noise’ that makes it difficult to assess the impact of artificial intelligence (AI) on the labour market. It analyses conflicting conclusions and predictions regarding the timeline of AI development, AI’s ability to replace human labour, and its impact on productivity and skill differentials. It shows that although the unprecedented rapid development of AI means that more and more tasks can be automated, the relationship between the theoretical capabilities of foundational AI models and the actual automation of automatable tasks is not linear. As an outcome of the interaction of numerous factors, the impact of technology on employment will vary from occupation to occupation. The study applies the concept of ‘skill-biased technological change’ to the AI era. It concludes that as the automation of knowledge-intensive tasks performed by graduate workers becomes easier and the number of tasks that can be automated expands rapidly, shifting labour market demand in favour of the skilled will become manifest within the category of graduate employees. Demand is expected to decline not only for inexperienced recent graduates, but also for low- to medium-skilled graduates. Competition for graduate jobs will intensify at an unprecedented rate. Only the best graduate employees will be able to retain their jobs. This means that the qualifications and skills of graduate employees whose performance is merely adequate will be devalued by AI, irrespective of the fact that these qualifications and skills had been both socially and individually quite expense to acquire. The devaluation of qualifications foreshadows a crisis in the current structure of the education system, while the devaluation of skills will lead to identity and existential crises for the individual degree holders as well as to a social crisis.

References

Acemoglu, D. (2002). Technical change, inequality, and the labor market. Journal of Economic Literature, 40(1), 7–72. https://doi.org/10.1257/0022051026976

Acemoglu, D. (2025). The simple macroeconomics of AI. Economic Policy, 40(121), 13–58. https://doi.org/10.1093/epolic/eiae042

Acemoglu, D., & Restrepo, P. (2019). Artificial intelligence, automation, and work. In The Economics of Artificial Intelligence: An Agenda. University of Chicago Press, pp. 197–236.

Agrawal, A. K., Gans, J. S., & Goldfarb, A. (2025). The Economics of bicycles for the mind (NBER Working Paper, No. 34034). National Bureau of Economic Research. https://doi.org/10.2139/ssrn.5347891

Anthropic (2024). The Claude 3 Model Family: Opus, Sonnet, Haiku. https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf

Autor, D. H. (2015). Why are there still so many jobs? The history and future of workplace automation. Journal of Economic Perspectives, 29(3), 3–30. https://doi.org/10.1257/jep.29.3.3

Autor, D. H. (2025). David Autor on AI and the future of work. VoxDev Talk. https://voxdev.org/topic/technology-innovation/david-autor-ai-and-future-work

Autor, D. H., Katz, L. F., & Krueger, A. B. (1998). Computing inequality: have computers changed the labor market? The Quarterly Journal of Economics, 113(4), 1169–1213. https://doi.org/10.1162/003355398555874

Autor, D. H., Levy, F., & Murnane, R. J. (2003). The skill content of recent technological change: An empirical exploration. The Quarterly Journal of Economics, 118(4), 1279–1333. https://doi.org/10.1162/003355303322552801

Autor, D., & Thompson, N. (2025). Expertise. Journal of the European Economic Association, 23(4), 1203–1271. https://doi.org/10.1093/jeea/jvaf023

Baily, M. N., Brynjolfsson, E., & Korinek, A. (2023). Machines of mind: The case for an AI-powered productivity boom. The Brookings Institution. https://www.brookings.edu/articles/machines-of-mind-the-case-for-an-ai-powered-productivity-boom/

Baumol, W. J. (1967). Macroeconomics of unbalanced growth: the anatomy of urban cri-sis. The American Economic Review, 57(3), 415–426. https://www.jstor.org/stable/1812111

Becker, J., Rush, N., Barnes, E., & Rein, D. (2025). Measuring the impact of early-2025 AI on experienced open-source developer productivity. https://arxiv.org/pdf/2507.09089

Berkhout, P. H., Muskens, J. C., & Velthuijsen, J. W. (2000). Defining the rebound effect. Energy Policy, 28(6-7), 425–432. https://doi.org/10.1016/S0301-4215(00)00022-7

Bessen, J. (2019). Automation and jobs: When technology boosts employment. Economic Policy, 34(100), 589–626. https://doi.org/10.1093/epolic/eiaa001

Bick, A., Blandin, A., & Deming, D. J. (2024). The rapid adoption of generative AI (NBER Working Paper, No. 32966). National Bureau of Economic Research. https://doi.org/10.

/ssrn.4964384

Boncz, B., & Szabó, Z. R. (2022). A mesterséges intelligencia munkaerő-piaci hatásai. Hogyan készüljünk fel? Vezetéstudomány, 53(2), 68–80. https://doi.org/10.14267/VEZTUD.2022.02.06

Bonney, K., Breaux, C., Buffington, C., Dinlersoz, E., Foster, L., Goldschlag, N., Haltiwanger, J., Kroff, Z., & Savage, K. (2024). The impact of AI on the workforce: Tasks versus jobs? Economics Letters, 244, 111971. https://doi.org/10.1016/j.econlet.2024.111971

Brynjolfsson, E., Rock, D., & Syverson, C. (2017). Artificial intelligence and the modern productivity paradox: A clash of expectations and statistics (NBER Working Paper, No. 24001). National Bureau of Economic Research. https://doi.org/10.3386/w24001

Brynjolfsson, E., Chandar, B., & Chen, R. (2025). Canaries in the coal mine? Six facts about the recent employment effects of Artificial Intelligence. https://digitaleconomy.stanford.edu/wp-content/uploads/2025/08/Canaries_BrynjolfssonChandarChen.pdf

Brynjolfsson, E., Li, D., & Raymond, L. (2025). Generative AI at work. The Quarterly Journal of Economics, 140(2), 889–942. https://doi.org/10.1093/qje/qjae044

Business Insider (2025). Sam Altman explains why AI will replace 40% of your work. https://www.businessinsider.com/sam-altman-explains-ai-will-replace-40-of-your-work-2025-9

Campbell, D. (2024). Online GP consultations have led to harm and death, investigation finds. The Guardian. https://www.theguardian.com/society/article/2024/jul/25/online-gp-consultations-have-led-to-harm-and-death-investigation-finds

Cerullo, M. (2024). Waymo’s driverless cars honk at each other, waking neighbors. CBS News. https://www.cbsnews.com/news/waymos-driverless-cars-honking-san-francisco/

Challapally, A., Pease, C., Raskar, R., & Chari, P. (2025). The GenAI divide: State of AI in business 2025. https://www.artificialintelligence-news.com/wp-content/uploads/2025/08/ai_report_2025.pdf

Chandar, B. (2025). Tracking employment changes in AI-exposed jobs. https://doi.org/10.2139/ssrn.5384519

Chollet, F., Knoop, M., Kamradt, G., Landers, B., & Pinkard, H. (2025). Arc-agi-2: A new challenge for frontier AI reasoning systems. https://arxiv.org/pdf/2505.11831?

Comin, D. A., Hobijn, B., & Rovito, E. (2006). Five facts you need to know about technology diffusion (NBER Working Paper, No. 11928). National Bureau of Economic Research. https://ssrn.com/abstract=876031

Conte, N. (2025). Mapped: Global income level classification by country. https://www.visualcapitalist.com/global-income-level-classification-by-country-gni/#:~:text=The%20World%20Bank%20lists%2087%20high%20income,territories%20brings%20the%20broader%20total%20to%2093

Csaszar, F. A., Ketkar, H., & Kim, H. (2024). Artificial intelligence and strategic decision-making: Evidence from entrepreneurs and investors. Strategy Science, 9(4), 322–345. https://doi.org/10.1287/stsc.2024.0190

David, P. A. (1990). The dynamo and the computer: an historical perspective on the modern productivity paradox. The American Economic Review, 80(2), 355–361. https://www.jstor.org/stable/2006600

Dell’Acqua, F., McFowland III, E., Mollick, E. R., Lifshitz-Assaf, H., Kellogg, K., Rajendran, S., Krayer, L., Candelon, F., & Lakhani, K. R. (2023). Navigating the jagged technological frontier: Field experimental evidence of the effects of AI on knowledge worker productiv-ity and quality (Harvard Business School Technology & Operations Management Unit Working Paper, No. 13). Harvard Business School. https://doi.org/10.2139/ssrn.4573321

Deroover, K., Knight, S., Burke, P. F., & Bucher, T. (2023). Why do experts disagree? The development of a taxonomy. Public Understanding of Science, 32(2), 224–246. https://doi.org/10.1177/09636625221110029

Dominski, J., & Lee, Y. S. (2025). Advancing AI capabilities and evolving labor outcomes. https://arxiv.org/pdf/2507.08244

Drago, L., & Laine, R. (2025). The intelligence curse. https://intelligence-curse.ai/

Duffy, C. (2025). Why this leading AI CEO is warning the tech could cause mass unemploy-ment. CNN. https://edition.cnn.com/2025/05/29/tech/ai-anthropic-ceo-dario-amodei-

unemployment

Eckhardt, S., & Goldschlag, N. (2025). AI and jobs: The final word (until the next one). Eco-nomic Innovation Group. https://eig.org/ai-and-jobs-the-final-word/

Economist (2025a). How AI will divide the best from the rest. The Economist. https://www.economist.com/finance-and-economics/2025/02/13/how-ai-will-divide-the-best-from-the-rest

Economist (2025b). Why today’s graduates are screwed. The Economist. https://www.economist.com/finance-and-economics/2025/06/16/why-todays-graduates-are-screwed

Economist (2025c). Who needs Accenture in the age of AI? The Economist. https://www.economist.com/business/2025/06/26/who-needs-accenture-in-the-age-of-ai

Eloundou, T., Manning, S., Mishkin, P., & Rock, D. (2024). GPTs are GPTs: Labor market impact potential of LLMs. Science, 384(6702), 1306–1308. https://doi.org/10.1126/science.adj0998

Eyo-Udo, N. l. (2024). Leveraging artificial intelligence for enhanced supply chain optimi-zation. Open Access Research Journal of Multidisciplinary Studies, 7(2), 1–15. https://doi.org/10.53022/oarjms.2024.7.2.0044

Fang, L., Yuan, Z., Zhang, K., Donati, D., & Sarvary, M. (2025). Generative AI and firm productivity: Field experiments in online retail. https://arxiv.org/pdf/2510.12049

Felten, E., Raj, M., & Seamans, R. (2021). Occupational, industry, and geographic exposure to artificial intelligence: A novel dataset and its potential uses. Strategic Management Journal, 42(12), 2195–2217. https://doi.org/10.1002/smj.3286

Feyerabend, P. (1975). Against method: Outline of an anarchistic theory of knowledge. Verso Books.

Filippucci, F., Gal, P., & Schief, M. (2024). Miracle or myth? Assessing the macroeconomic productivity gains from Artificial Intelligence (OECD Artificial Intelligence Paper, No. 29). OECD Publishing. https://doi.org/10.1787/b524a072-en

Gans, J. (2025). Radiologists are the canaries in the coal mine. Joshua Gans’ Newsletter. https://joshuagans.substack.com/p/radiologists-are-the-canaries-in

Gimbel, M., Kinder, M., Kendall, J., Lee, M. (2025). Evaluating the impact of AI on the labor market: Current state of affairs. Budgetlab, Yale University. https://budgetlab.yale.edu/research/evaluating-impact-ai-labor-market-current-state-affairs

Goldin, C., & Katz, L. F. (1998). The origins of technology-skill complementarity. The Quar-terly Journal of Economics, 113(3), 693–732. https://doi.org/10.1162/003355398555720

Goos, M., Manning, A., & Salomons, A. (2009). Job polarization in Europe. American Eco-nomic Review, 99(2), 58–63. https://doi.org/10.1257/aer.99.2.58

Goos, M., Manning, A., & Salomons, A. (2014). Explaining job polarization: Routine-biased technological change and offshoring. American Economic Review, 104(8), 2509–2526. https://doi.org/10.1257/aer.104.8.2509

Greve, H. R., & Seidel, M. D. L. (2025). Innovation diffusion uncertainty: incremental and radical innovations compared. Industrial and Corporate Change, dtaf025, https://doi.org/10.1093/icc/dtaf025

Guzik, E. E., Byrge, C., & Gilde, C. (2023). The originality of machines: AI takes the Torrance Test. Journal of Creativity, 33(3), 100065. https://doi.org/10.1016/j.yjoc.2023.100065

HAI Stanford (2025). Artificial Intelligence Index Report 2025. Stanford University Human-Centered Artificial Intelligence. https://hai.stanford.edu/assets/files/hai_ai_index_report_2025.pdf

Handa, K., Tamkin, A., McCain, M., Huang, S., Durmus, E., Heck, S., Mueller, J., Hong, J., Ritchie, S., Belonax, T., Troy, K. K., Amodei, D., Kaplan, J., Clark, J., & Ganguli, D. (2025). Which economic tasks are performed with AI? Evidence from millions of Claude conversa-tions. https://arxiv.org/pdf/2503.04761

Hendrycks, D., Mazeika, M., & Woodside, T. (2023). An overview of catastrophic AI risks. https://arxiv.org/pdf/2306.12001

Horton, R., Michalski, J., Winters, S., Gunn, D., & Holland, J. (2025). AI ROI: the paradox of rising investment and elusive returns. Deloitte. https://www.deloitte.com/nl/en/issues/generative-ai/ai-roi-the-paradox-of-rising-investment-and-elusive-returns.html

Hosseini Maasoum, S. M., & Lichtinger, G. (2025). Generative AI as seniority-biased tech-nological change: Evidence from US résumé and job posting data. https://doi.org/10.2139/ssrn.5425555

Hubert, K. F., Awa, K. N., & Zabelina, D. L. (2024). The current state of artificial intelligence generative language models is more creative than humans on divergent thinking tasks. Scientific Reports, 14(1), 3440. https://doi.org/10.1038/s41598-024-53303-w

Hulten, C. R. (1978). Growth accounting with intermediate inputs. The Review of Economic Studies, 45(3), 511–518. https://doi.org/10.2307/2297252

Humlum, A., & Vestergaard, E. (2025). Large language models, small labor market effects (NBER Working Paper, No. 33777). National Bureau of Economic Research. https://doi.org/10.2139/ssrn.5250742

Jockims, T. L. (2025). AI is not just ending entry-level jobs. It’s the end of the career ladder as we know it. CNBC. https://www.cnbc.com/2025/09/07/ai-entry-level-jobs-hiring-careers.html

Kahneman, D., Sibony, O., & Sunstein, C. R. (2021). Zaj – Az emberi döntéshozatalt zavaró tényezők. HVG Könyvek. (Fordította: Garai Attila.)

Keding, C. (2021). Understanding the interplay of artificial intelligence and strategic man-agement: four decades of research in review. Management Review Quarterly, 71(1), 91–134. https://doi.org/10.1007/s11301-020-00181-x

Klein Teeselink, B. (2025). Generative AI and labor market outcomes: Evidence from the United Kingdom. https://doi.org/10.2139/ssrn.5516798

Kokotajlo, D., Alexander, S., Larsen, T., Lifland, E., & Dean, R. (2025). AI 2027. https://ai-2027.com

Korinek, M. A., Schindler, M. M., & Stiglitz, J. (2021). Technological progress, artificial intel-ligence, and inclusive growth (IMF Working Paper, No. 166). International Monetary Fund. https://doi.org/10.1093/oso/9780192846938.003.0005

Kuhn, T. S. (1962). The structure of scientific revolutions. University of Chicago.

Kulveit, J., Douglas, R., Ammann, N., Turan, D., Krueger, D., & Duvenaud, D. (2025). Gradual disempowerment: Systemic existential risks from incremental AI development. https://arxiv.org/pdf/2501.16946

Kyung-Tak, L. (2025). AI automation prompts significant layoffs in India and Philippines’ outsourcing sectors. The Chosun Daily. https://biz.chosun.com/en/en-it/2025/08/27/GX3E5DI6CNAD5BFSUUAFVVTAK4/

Lettink, A. (2025). The 2025 graduate job crisis. It’s not AI. https://anitalettink.com/futureofwork/the-2025-graduate-jobs-crisis-its-not-ai/

Liu, Y., & Wang, H. (2024). Who on Earth is using generative AI? (Policy Research Working Paper, No. 10870). The World Bank. https://dx.doi.org/10.2139/ssrn.5495020

Lohr, S. (2025). Your A.I. radiologist will not be with you soon. The New York Times. https://www.nytimes.com/2025/05/14/technology/ai-jobs-radiologists-mayo-clinic.html

Maclean, D. (2025). AI’s ROI reality check: Are companies measuring what matters? Forbes. https://www.forbes.com/sites/forbes-research/2025/10/08/ai-roi-measurement-challenges-forbes-survey-2025/

Marcus, G. (2020). The next decade in AI: four steps towards robust artificial intelligence. https://arxiv.org/pdf/2002.06177

Martin, M. (2025). Educated but unemployed, a rising reality for college grads. Oxford Economics. https://www.oxfordeconomics.com/wp-content/uploads/2025/05/US-Educated-

but-unemployed-a-rising-reality-for-college-grads.pdf

McElheran, K., Yang, M. J., Kroff, Z., & Brynjolfsson, E. (2025). The Rise of Industrial AI in America: Microfoundations of the Productivity J-curve (s) (Working Paper, No. 25–27). Center for Economic Studies, U.S. Census Bureau. https://doi.org/10.2139/ssrn.5036270

Merchant, B. (2025). Blood in the machine. https://www.bloodinthemachine.com/s/ai-killed-my-job

Microsoft (2025). Generative AI delivering substantial ROI to businesses integrating the technology across operations: Microsoft-sponsored IDC report. https://news.microsoft.com/en-xm/2025/01/14/generative-ai-delivering-substantial-roi-to-businesses-integrating-

the-technology-across-operations-microsoft-sponsored-idc-report/

Mikalef, P., & Gupta, M. (2021). Artificial intelligence capability: Conceptualization, meas-urement calibration, and empirical study on its impact on organizational creativity and firm performance. Information & Management, 58(3), 103434. https://doi.org/10.1016/j.im.2021.103434

Narayanan, A., & Kapoor, S. (2025). AI as normal technology. An alternative to the vision of AI as a potential superintelligence. Knight First Amendment Institute, Columbia University. https://thedocs.worldbank.org/en/doc/d6e33a074ac9269e4511e5d44db2f9ac-0050022025/original/AI-as-Normal-Technology-Narayanan-Kapoor-Final.pdf

Niederhoffer, K., Rosen Kellerman, G., Lee, A., Liebscher, A., Rapuano, K., & Hancock, J. T. (2025). AI-generated “workslop” is destroying productivity. Harvard Business Review, https://hbr.org/2025/09/ai-generated-workslop-is-destroying-productivity

Noy, S., & Zhang, W. (2023). Experimental evidence on the productivity effects of generative artificial intelligence. Science, 381(6654), 187–192. https://doi.org/10.1126/science.adh2586

Patwardhan, T., Dias, R., Proehl, E., Kim, G., Wang, M., Watkins, O., Posada Fishman, S., Aljubeh, M., Thacker, P., Fauconnet, L., Kim, N. S., Chao, P., Miserendino, S., Chabot, G., Li, D., Sharman, M., Barr, A., Glaese, A., & Tworek, J. (2025). GDPVal: Evaluating AI Model Performance on Real-World Economically Valuable Tasks. https://openai.com/index/gdpval/

Phan, L., Gatti, A., Han, Z., Li, N., Hu, J., Zhang, H., Zhang, C. B. C., Shaaban, M., Ling, J., Shi, S., Choi, M., Agrawal, A., Chopra, A., Khoja, A., Kim, R., Ren, R., Hausenloy, J., Zhang, O., Mazejka, M., Yue, S., Wang, A., & Hendrycks, D. (2025). Humanity’s last exam. https://arxiv.org/pdf/2501.14249

Reiss, J. (2020). Why do experts disagree? Critical Review, 32(1-3), 218–241. https://doi.org/

1080/08913811.2020.1872948

Richter, F. (2025). Services no longer required: Which jobs are most at risk? https://www.statista.com/chart/30161/decline-in-employment-levels-in-selected-occupations-by-2031/?srsltid=

AfmBOoq8DZocbLZIUR3YGcxyGpRsCvyWBF4xydyxvUOf71M9yD1AVAHy

Schneider, B., & Vipond, H. (2023). The past and future of work: How history can inform the age of automation (CESifo Working Paper, No. 10766). ifo Institute. https://www.ifo.de/DocDL/cesifo1_wp10766.pdf

Smith, N. (2025). AI and jobs, again. Noahpinion. https://www.noahpinion.blog/p/ai-and-jobs-again?utm_source=profile&utm_medium=reader2

Stanger, A., Kraus, J., Lim, W., Millman-Perlah, G., & Schroeder, M. (2024). Terra incognita: the governance of artificial intelligence in global perspective. Annual Review of Political Science, 27(1), 445–465. https://doi.org/10.1146/annurev-polisci-041322-042247

Stinebrickner-Kauffman, T. (2025). First, they came for the software engineers… Second Thoughts. https://secondthoughts.ai/p/first-they-came-for-the-software

Susskind, D. (2020). A world without work: Technology, automation and how we should respond. Penguin UK.

Szalavetz, A. (2019). Mesterséges intelligencia és technológiavezérelt termelékeny-ségemelkedés. Külgazdaság, 63(7-8), 53–79. https://doi.org/10.47630/KULG.2019.63.7-8.53

Teece, D. J. (1986). Profiting from technological innovation. Research Policy, 15(6), 285–305.

Thompson, D. (2025). Something alarming is happening to the job market. The Atlantic. https://www.theatlantic.com/economy/archive/2025/04/job-market-youth/682641/

Ulin, M. (2025). I put AI forecasting to the test on 100 real markets, here’s what actually happened. Pioneering Thoughts. https://pioneeringthoughts.substack.com/p/i-put-ai-forecasting-to-the-test

Van Ark, B. (2016). The productivity paradox of the new digital economy. International Productivity Monitor, 31, 3–18.

Vengattil, M., & Kalra, A. (2025). Meet the AI chatbots replacing India’s call-center workers. Reuters. https://www.reuters.com/world/india/meet-ai-chatbots-replacing-indias-call-center-workers-2025-10-15/

Vidgen, B., Fennelly, A., Pinnix, E., Mahapatra, C., Richards, Z., Bridges, A., Huang, C., Hunsberger, B., Zafar, F., Foody, B., Barton, B., Sunstein, C. R., Topol, E., & Nitski, O. (2025). The AI Productivity Index (APEX). https://doi.org/10.48550/arXiv.2509.25721

Wang, P., & Wong, T. N. (2025). Artificial intelligence and technological unemployment (NBER Working Paper, No. 33867). National Bureau of Economic Research. https://ssrn.com/abstract=5278370

Waymo (2025). Do autonomous vehicles outperform latest-generation human-driven vehicles? A comparison to Waymo’s auto liability insurance claims at 25 million miles. Waymo. https://waymo.com/research/do-autonomous-vehicles-outperform-latest-generation-human-driven-vehicles-25-million-miles/

Wesdorp, K. (2025). Future trends in AI-powered radiology. DeepHealth. https://deephealth.com/insights/future-trends-in-ai-powered-radiology/#_ftnref3

Wiggs, J. (2024). Can artificial intelligence cause medical errors? This MIT researcher shows it can. The Boston Globe. https://www.bostonglobe.com/2025/08/27/business/mit-ai-medical-errors-bias/

Yudkowsky, E., & Soares, N. (2025). If anyone builds it, everyone dies. Little Brown.

Zuboff, S. (1988). In the Age of the Smart Machine: The Future of Work and Power. Basic Books.

Published
2026-01-22
How to Cite
SzalavetzA. (2026). Cutting through the noise about the impact of AI on employment. Hungarian Economic Review, 73(1), 72-94. https://doi.org/10.18414/KSZ.2026.1.72
Section
Tanulmány