MI jártasság a jogi mesterséges intelligencia rendszerekben: egy gyakorlati megközelítés
Absztrakt
A jogi mesterséges intelligencia-rendszereket világszerte egyre gyakrabban alkalmazzák igazságügyi és jogi rendszerek alkalmazói és szolgáltatói különféle célokra. E rendszerek ugyan ígéretes előnyöket kínálnak, például a torzítás csökkentése, a hatékonyság és az elszámoltathatóság növelése terén, alkalmazásuk jelentős kockázatokkal is jár, melynek során a lehetőségek, valamint az etikus és jogilag megalapozott fejlesztés és működtetés közötti egyensúly fennartása szükséges. A mesterséges intelligencia ismeretek amelyek az Európai Unió MI rendelete (AI Act) alapján jogi követelményként is megjelennek kulcsszerepet játszhatnak abban, hogy az alkalmazók és szolgáltatók felelősségteljes és etikus módon alkalmazzák ezeket a technológiákat. A tanulmány elemzi az MI jártasság fogalmát, bemutatja a jogi MI rendszerek előnyeit és kockázatait, és ezeket egy szélesebb körű, etikai alapú jogi MI-rendszer kontextusába helyezi. A tanulmány gyakorlati eredménye egy kérdőív formájában megfogalmazott útmutató, amely eszközként szolgálhat az alkalmazók és szolgáltatók számára a kockázatok, előnyök és érintetti szempontok értékelésére, elősegítve ezzel a társadalmi és szabályozási elvárásoknak való megfelelést.
Hivatkozások
in charts. McKinsey Global Institute, 2024. https://www.mckinsey.com/mgi/our-research/mckinsey-global-institute-2024-in-charts
AI Literacy – Questions & Answers. European Commission, 2025. https://digital-strategy.ec.europa.eu/en/faqs/ai-literacy-questions-answers
Alnemr, Nardine: Democratic self-government and the algocratic shortcut: The democratic harms in algorithmic governance of society. Contemporary Political Theory, Vol. 23. (2024) https://doi.org/10.1057/s41296-023-00656-y
Alpaydin, Ethem: Machine learning: The new AI. MIT Press, 2016.
Annapureddy, Ravinithesh – Fornaroli, Alessandro – Gatica-Perez, Daniel: Generative AI literacy: Twelve defining competencies. Digital Government: Research and Practice, Vol. 6., N. 1. (2024) https://doi.org/10.1145/3685680
Annual report 2023, ECtHR. https://www.echr.coe.int/documents/d/echr/annual-report-2023-eng
Barry, Brian M.: How judges judge: Empirical insights into judicial decision-making. Routledge, 2021. https://doi.org/10.4324/9780429023422
Beckers, Anna – Teubner, Gunther: Human–algorithm hybrids as (quasi-) organizations? On the accountability of digital collective actors. Journal of Law and Society, Vol. 50., N. 1. (2024) https://doi.org/10.1111/jols.12412
Beijing consensus on artificial intelligence and education. UNESCO, 2019. https://unesdoc.unesco.org/ark:/48223/pf0000368303.
Björklund, Fredrika: Trust and surveillance: An odd couple or a perfect pair? In: Lora Anne Viola – Paweł Laidler (eds.): Trust and transparency in an age of surveillance. Routledge, 2021. https://doi.org/10.4324/9781003120827
Bozdağ, Mustafa – Sevim, Nurullah – Koç, Aykut: Measuring and mitigating gender bias in legal contextualized language models. ACM Transactions on Knowledge Discovery from Data, Vol. 18., N. 4. (2024) https://doi.org/10.1145/3628602
Brożek, Bartosz et al.: The black box problem revisited: Real and imaginary challenges for automated legal decision-making. Artificial Intelligence and Law, Vol. 32. (2024) https://doi.org/10.1007/s10506-023-09356-9
Burrell, Jenna: How the machine ‘thinks’: Understanding opacity in machine learning algorithms. Big Data & Society, Vol. 3., N. 1. (2016) https://doi.org/10.1177/2053951715622512
Casal-Otero, Lorena et al.: AI literacy in K-12: A systematic literature review. International Journal of STEM Education, Vol. 10. (2023) 29. https://doi.org/10.1186/s40594-023-00418-7
Ng, Davy Tsz Kit et al.: Conceptualizing AI literacy: An exploratory review. Computers and Education: Artificial Intelligence, Vol. 2. (2021)100041. https://doi.org/10.1016/j.caeai.2021.100041
Černý, Michal: AI literacy in Higher Education: Theory and Design. In: Ł. Tomczyk (ed.): New Media Pedagogy: Research Trends, Methodological Challenges, and Successful İmplementations. Communications in Computer and Information Science. Springer, 2024. https://doi.org/10.1007/978-3-031-63235-8_24
Migliorini, Sara – Moreira J. I., João Ilhão: The case for nurturing AI literacy in law schools. Asian Journal of Legal Education, Vol. 11., N. 1. (2024) https://doi.org/10.1177/23220058241265613
Castelliano, Caio – Grajzl, Peter – Watanabe, Eduardo: Does electronic case-processing enhance court efficacy? New quantitative evidence. Government Information Quarterly, Vol. 40., N. 4. (2023) 101861. https://doi.org/10.1016/j.giq.2023.101861
Çelebi, Celalettin et al.: Artificial intelligence literacy: An adaptation study. Instructional Technology and Lifelong Learning, Vol. 4., N. 2. (2023) 291–306. https://doi.org/10.52911/itall.1401740
Çelik, Ismail: Exploring the determinants of artificial intelligence (AI) literacy: Digital divide, computational thinking, cognitive absorption. Telematics and Informatics, Vol. 83. (2023) 102026. https://doi.org/10.1016/j.tele.2023.102026
CEPEJ: Resource Centre Cyberjustice and AI Jun 6, 2025. https://tinyurl.com/mr3h8j8h
Çetindamar, Dilek et al.: Explicating AI literacy of employees at digital workplaces. IEEE Transactions on Engineering Management, Vol. 71., N. 3. (2024) https://doi.org/10.1109/TEM.2021.3138503
Chromik, Michael et al.: I think I get your point, AI! The illusion of explanatory depth in explainable AI. In: Proceedings of the 26th International Conference on Intelligent User Interfaces (IUI ’21), New York, ACM, 2021. https://doi.org/10.1145/3397481.3450644
Cox, Andrew: Algorithmic literacy, AI literacy, and responsible generative AI literacy. Journal of Web Librarianship, Vol. 18., N. 3. (2024) https://doi.org/10.1080/19322909.2024.2395341
Cui, Yadong: Artificial intelligence and judicial modernization. Springer Nature Singapore Pte Ltd, 2020. https://link.springer.com/book/10.1007/978-981-32-9880-4
Decoding responsibility in the era of automated decisions: Understanding the implications of the CJEU's SCHUFA judgment. Centre for Information Policy Leadership, 2024. https://tinyurl.com/4van5x3x
Deroy, Aniket – Maity, Subhankar: Questioning biases in case judgment summaries: Legal datasets or large language models? arXiv Preprint. https://doi.org/10.48550/arXiv.2312.00554
Ebers, Martin: Truly Risk-Based Regulation of Artificial Intelligence How to Implement the EU’s AI Act. European Journal of Risk Regulation, 2024. https://doi.org/10.1017/err.2024.78
Farah, Hibaq: Court of appeal judge praises ‘jolly useful’ ChatGPT after asking it for legal summary. The Guardian, 15 September 2023. https://tinyurl.com/bdfd7jm8 ; Molly Bohannon: Lawyer Used ChatGPT In Court And Cited Fake Cases: A Judge Is Considering Sanctions. Forbes, 8 June 2023. https://tinyurl.com/5axdnd8n
Figaredo, Daniel Domínguez– Julia Stoyanovich: Responsible AI literacy: A stakeholder-first approach. Big Data & Society, Vol. 10., N. 2. (2023). https://doi.org/10.1177/20539517231219958
Fitsilis, Fotis – Mikros, George: AI-based solutions for legislative drafting in the EU Summary report. European Commission Directorate-General for Digital Services, 2024. https://tinyurl.com/3y7ztkkk
Fjelstul, Joshua C. – Gabel, Matthew – Carrubba, Clifford J.: The timely administration of justice: Using computational simulations to evaluate institutional reforms at the CJEU. Journal of European Public Policy, Vol. 30., N. 12. (2022) https://doi.org/10.1080/13501763.2022.2113115
Fomin, Vladislav V. – Astromskis, Paulius: The Black Box Problem. In: John-Stewart Gordon (ed.): Future Law, Ethics, and Smart Technologies. Leiden, Brill, 2023. https://doi.org/10.1163/9789004682900_012
Forrest, Katherine B.: When machines can be judge, jury, and executioner: Justice in the age of artificial intelligence. World Scientific Publishing Company, 2021. https://doi.org/10.1142/12172
Francesconi, Enrico: The winter, the summer, and the summer dream of artificial intelligence in law. Artificial Intelligence and Law, Vol. 30. (2022) https://doi.org/10.1007/s10506-022-09309-8
Ghasemaghaei, Maryam – Kordzadeh, Nima: Understanding how algorithmic injustice leads to making discriminatory decisions: An obedience to authority perspective. Information & Management, Vol. 61., N. 2. (2024) 103921. https://doi.org/10.1016/j.im.2024.103921
Gravett, W. H.: Is the dawn of the robot lawyer upon us? The fourth industrial revolution and the future of lawyers. Potchefstroom Electronic Law Journal, Vol. 23. (2020) https://scholarship.law.duke.edu/dlj/vol68/iss6/2 https://doi.org/10.17159/1727-3781/2020/v23i0a6794
Guidelines and Regulations to Provide İnsights on Public Policies to Ensure AI’s Beneficial Use as a Professional Tool. International Bar Association, 18 September, 2024. https://www.ibanet.org/PPID/Constituent/Multi-displry_Pract/anlbs-ai-report
Gutiérrez, Juan David: ChatGPT in Colombian Courts: “Why we need to have a conversation about the digital literacy of the judiciary”. Verfassunblog, 23 February 2023. https://verfassungsblog.de/colombian-chatgpt/
Hacker, Philipp: Sustainable AI regulation. Common Market Law Review, Vol. 61., N. 2. (2024) https://doi.org/10.54648/cola2024025
Hamon, Ronan et al.: Bridging the gap between AI and explainability in the GDPR: Towards trustworthiness-by-design in automated decision-making. IEEE Computational Intelligence Magazine, Vol. 17., N. 1. (2022) https://doi.org/10.1109/MCI.2021.3129960
Harper, Christopher: Using GPT-4 to generate 100 words consumes up to 3 bottles of water — AI data centers also raise power and water bills for nearby residents. Tom’s Hardware, 19 September 2024. https://tinyurl.com/mr34dx58
Joshi, Abhinav et al.: IL-TUR: Benchmark for Indian legal text understanding and reasoning. arXiv Preprint, (2024). https://arxiv.org/abs/2407.05399
Katz, Daniel Martin – Bommarito, Michael J. – Blackman, Josh: A general approach for predicting the behavior of the Supreme Court of the United States. PLOS ONE Vol. 12., N. 4. (2017). https://doi.org/10.1371/journal.pone.0174698
Kelemen, Katalin – de Miranda, Luis: Courts as anthrobots: Learning from human forms of interaction to develop a philosophically healthy model for judicial automation. International Journal for Court Administration, Vol. 15., N. 2. (2024) 2. https://doi.org/10.36745/ijca.525
Kinger, Shakti – Kulkarni, Vrushali: Demystifying the black box: An overview of explainability methods in machine learning. International Journal of Computers and Applications, Vol. 46., N. 2. (2023) https://doi.org/10.1080/1206212X.2023.2285533
Knoth, Nils et al.: Developing a holistic AI literacy assessment matrix: Bridging generic, domain-specific, and ethical competencies. Computers and Education Open, Vol. 6. (2024) 100177. https://doi.org/10.1016/j.caeo.2024.100177
Lai, Jinqi et al.: Large language models in law: A survey. (5). AI Open, Vol. 5. (2024) https://doi.org/10.1016/j.aiopen.2024.09.002
LaRosa, Emily – Danks, David: Impacts on trust of healthcare AI. In: ACM Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society. 2018. https://doi.org/10.1145/3278721.3278771
Laupichler, Matthias Carl et al.: Development of the “Scale for the assessment of non-experts’ AI literacy” – An exploratory factor analysis. Computers in Human Behavior Reports, Vol. 12. (2023) 100338. https://doi.org/10.1016/j.chbr.2023.100338
Lin, Zhiyuan Jerry et al.: The limits of human predictions of recidivism. Science Advances, Vol. 6., N. 1. (2020) https://doi.org/10.1126/sciadv.aaz0652
Linardatos, Pantelis – Papastefanopoulos, Vasilis – Kotsiantis, Sotiris: Explainable AI: A review of machine learning interpretability methods. Entropy, Vol. 23., N. 1. (2021) https://doi.org/10.3390/e23010018
Living repository to foster learning and exchange on AI literacy. European Commission, 4 February 2025. https://tinyurl.com/2hah9evj
Long, Brandon – Palmer, Amitabha: AI and access to justice: How AI legal advisors can reduce economic and shame-based barriers to justice. TATuP – Zeitschrift für Technikfolgenabschätzung in Theorie Und Praxis, Vol. 33., N. 1. (2024) https://doi.org/10.14512/tatup.33.1.21
Long, Duri – Magerko, Brian: What is AI literacy? Competencies and design considerations. In: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. New York, ACM, (2020). https://doi.org/10.1145/3313831.3376727
Lütz, Fabian: The AI Act, gender equality, and non-discrimination: What role for the AI office? ERA Forum, Vol. 25. (2024) https://doi.org/10.1007/s12027-024-00785-w
Markovic, Milan: Rise of the robot lawyers. Arizona Law Review, Vol. 61., No. 2. (2019) 325–350. https://arizonalawreview.org/pdf/61-2/61arizlrev325.pdf
Maslej, Nestor et al.: The AI Index 2024 Annual Report. AI Index Steering Committee, Institute for Human-Centered AI, Stanford University, (2024) https://doi.org/10.48550/arXiv.2405.19522
Matthias, Andreas: The responsibility gap: Ascribing responsibility for the actions of learning automata. Ethics and Information Technology, Vol. 6., N. 3. (2004) https://doi.org/10.1007/s10676-004-3422-1
Medvedeva, Masha – Wieling, Martijn – Vols, Michel: Rethinking the field of automatic prediction of court decision. Artificial Intelligence and Law, Vol. 31. (2023) https://doi.org/10.1007/s10506-021-09306-3
Millar, Jason – Kerr, Ian: Delegation, relinquishment, and responsibility: The prospect of expert robots. In: Ryan Calo – A. Michael Froomkin – Ian Kerr (eds.): Robot Law. Cheltenham, Edward Elgar Publishing. 2016. https://doi.org/10.4337/9781783476732.00012
Moran, Lyle: Lawyer cites fake cases generated by ChatGPT in legal brief. LegalDive, 30 May 2023. https://tinyurl.com/bdcxxwkj
Mori, Masahiro: The uncanny valley. (1970). The original essay by Masahiro Mori (K. F. MacDorman & N. Kageki, Trans.). IEEE Spectrum, 12 Jun 2012. https://spectrum.ieee.org/automaton/robotics/humanoids/the-uncanny-valley https://doi.org/10.1109/MRA.2012.2192811
Myers, Andrew: Rooting out anti-Muslim bias in popular language model GPT-3. Stanford HAI, 3 July 2022. https://hai.stanford.edu/news/rooting-out-anti-muslim-bias-popular-language-model-gpt-3
Nass, Clifford – Moon, Youngme: Machines and mindlessness: Social responses to computers. Journal of Social Issues, Vol. 56., N. 1. (2000) https://doi.org/10.1111/0022-4537.00153
Nass, Clifford – Steuer, Jonathan – Tauber, Ellen R.: Computers are social actors. In: ACM Proceedings of SIGCHI ’94 Human Factors in Computing Systems. 1994. https://doi.org/10.1145/259963.260288
O’Hara, Matthew J.: I, for one, welcome our new AI jurors: ChatGPT and the future of the jury system in American law. International Journal of Law, Ethics, and Technology, Vol. 3., N. 2. (2024) https://www.ijlet.org/4.3.2 https://doi.org/10.55574/ILSM6729
Pavlidis, Georgios: Unlocking the black box: Analysing the EU artificial intelligence act’s framework for explainability in AI. Law, Innovation and Technology, Vol. 16., N. 1. (2024) https://doi.org/10.1080/17579961.2024.2313795
Pinski, Marc – Benlian, Alexander : AI literacy for users – A comprehensive review and future research directions of learning methods, components, and effects. Computers in Human Behavior: Artificial Humans, Vol. 2., N. 1. (2024) 100062. https://doi.org/10.1016/j.chbah.2024.100062
Portela, Manuel et al.: A comparative user study of human predictions in algorithm-supported recidivism risk assessment. Artificial Intelligence and Law, (2024). https://doi.org/10.1007/s10506-024-09393-y
Raymond, Nate: US judge runs 'mini-experiment' with AI to help decide case. Reuters, 6 September 2024. https://tinyurl.com/pfjr6aab
Re, Richard M. – Solow-Niederman, Alicia: Developing artificially intelligent justice. Stanford Technology Law Review, Vol. 22., N. 2. (2019) https://www.law.virginia.edu/scholarship/publication/richard-m-re/923611
Rebstadt, Jonas et al.: Towards personalized explanations for AI systems: Designing a role model for explainable AI in auditing. Wirtschaftsinformatik Proceedings, Vol. 2. (2022) https://aisel.aisnet.org/wi2022/ai/ai/2
Reed, Chris – Grieman, Keri – Early, Joseph: Non-Asimov explanations: Regulating AI through transparency. Nordic Yearbook of Law and Informatics 2020–2021: Law in the Era of Artificial Intelligence, mars 2022 (2022) https://doi.org/10.53292/208f5901.20b0a4e7
Saunders, Tom: Legal tech teams turn to AI to advance business goals. Financial Times, 19 October 2023. https://www.ft.com/content/9a117ac7-29ae-43fe-b840-a04005b98799
Segal, Eddie: The impact of AI on cybersecurity. IEEE Computer Society, 31 March 2024. https://tinyurl.com/4sya5rh6
Shi, Changqing et al.: The smart court – A new pathway to justice in China? International Journal for Court Administration, Vol. 12., N. 1. (2021) https://doi.org/10.36745/ijca.367
Shneiderman, Ben: Bridging the gap between ethics and practice: Guidelines for reliable, safe, and trustworthy human-centered AI systems. ACM Transactions on Interactive Intelligent Systems, Vol. 10., N. 4. (2020) https://doi.org/10.1145/3419764
Steenhuis, Quinten – Westermann, Hannes: Getting in the door: Streamlining intake in civil legal services with large language models. arXiv Preprint, (2024) https://arxiv.org/abs/2410.03762 https://doi.org/10.3233/FAIA241242
Susskind, Richard: Online Courts and the Future of Justice. New York, Oxford Academic, 2019. (online ed.) https://doi.org/10.1093/oso/9780198838364.001.0001
Susskind, Richard: Tomorrow’s lawyers: An introduction to your future. Oxford, Oxford University Press, 2013.
Taddy, Matt: The technological elements of artificial intelligence. In: Ajay Agrawal – Joshua Gans – Avi Goldfarb (eds.): The economics of artificial intelligence: An agenda. National Bureau of Economic Research – University of Chicago Press, 2019.
Tamošiūnienė, Egidija – Terebeiza, Žilvinas – Doržinkevič, Artur: The possibility of applying artificial intelligence in the delivery of justice by courts. 17(1), Baltic Journal of Law & Politics, Vol. 17., N. 1. (2024) https://doi.org/10.2478/bjlp-2024-0010
Tevis, Walter: Mockingbird. RosettaBooks LLC, 1980.
The future is now: Artificial intelligence and the legal profession. International Bar Association, 2024. https://tinyurl.com/6x3twwxj
Third AI Pact webinar on AI literacy. 20 February, 2025. https://www.youtube.com/watch?v=Dyf4ZVts9HY
Valentin, Sarah: Impoverished algorithms: Misguided governments, flawed technologies, and social control. Fordham Urban Law Journal, Vol. 46., N. 2. (2019) https://ir.lawnet.fordham.edu/ulj/vol46/iss2/4/
Van Wynsberghe, Aimee: Artificial intelligence: From ethics to policy. European Parliament Panel for the Future of Science and Technology, 2020. https://tinyurl.com/macpukkz
Vasdani, Tara: Robot justice: China’s use of Internet courts. The Lawyer’s Daily, 5 February 2020. https://www.thelawyersdaily.ca/articles/17741/robot-justice-china-s-use-of-internet-courts
Veron, Mathieu: Do this LLMs use my prompt data for training. Medium, 2 July 2024. https://tinyurl.com/587346s3
Volokh, Eugene: Chief justice robots. Duke Law Journal, Vol. 68., N. 6. (2019)
Wachter, Sandra – Mittelstadt, Brent – Russell, Chris: Why fairness cannot be automated: Bridging the gap between EU non-discrimination law and AI. Computer Law & Security Review, Vol. 41. (2021) 105567. https://doi.org/10.1016/j.clsr.2021.105567
Wachter, Sandra: Limitations and loopholes in the EU AI Act and AI liability directives: What this means for the European Union, the United States, and beyond. Yale Journal of Law and Technology, Vol. 26., N. 3. (2024) http://dx.doi.org/10.2139/ssrn.4924553
Wang, Bingcheng – Rau, Pei-Luen Patrick – Yuan, Tianyi: Measuring user competence in using artificial intelligence: Validity and reliability of artificial intelligence literacy scale. Behaviour & Information Technology, Vol. 42., N. 9. (2022) https://doi.org/10.1080/0144929X.2022.2072768
Winter, Christoph K.: The challenges of artificial judicial decision-making for liberal democracy. In: P. Bystranowski – P. Janik – M. Próchnicki (eds.): Judicial decision-making: Integrating empirical and theoretical perspectives. (Economic Analysis of Law in European Legal Scholarship, Vol. 14.) Cham, Springer, 2021. https://doi.org/10.1007/978-3-031-11744-2_9
Without universal AI literacy, AI will fail us. World Economic Forum, Marc 17, 2022. https://www.weforum.org/stories/2022/03/without-universal-ai-literacy-ai-will-fail-us/
Yeung, Karen – Harkens, Adam: How do ‘technical’ design-choices made when building algorithmic decision-making tools for criminal justice authorities create constitutional dangers? Part II. Public Law, (April, 2023) https://tinyurl.com/ycy39trr
Copyright (c) 2025 Gültekin-Várkonyi Gizem

This work is licensed under a Creative Commons Attribution 4.0 International License.