The method of images applied to determine the size of backfills to protect drinking water base in the neighbourhood of gravel pits

  • Rózsa Csoma Budapest University of Technology and Economics, Faculty of Civil Engineering, Department of Hydraulic and Water Resources Engineering
  • Flóra Wágner Budapest University of Technology and Economics, Faculty of Civil Engineering, Department of Hydraulic and Water Resources Engineering
Keywords: Gravel dredging, backfill, drinking water base, travel or residence time, protection zone, image wells

Abstract

The evaporation of gravel pits is recharged from the groundwater, which causes increasing flow and a drawdown in the neighbourhood of the pits. This effect can reach the protection zone of drinking water wells established earlier. The borders of the protection zone are usually determined based on the travel or residence time of the water to reach the well. If a new water surface, e.g. a gravel pit appears near the well, this travel time will of course reduce. To restore it, a properly placed and sized backfill can be applied. For the backfill usually a certain amount of dredging waste is provided. This waste is usually of finer grains than the gravel and not suitable as building material. In an earlier paper we introduced a simple solution to determine the main parameters of the backfill, but it may be applied only in case of parallel flow, further to the well. In this work we introduce a method based on the theory of image wells that is suitable to estimate the size of the backfill even in the close vicinity of the wells to restore the residence time.

Author Biographies

Rózsa Csoma, Budapest University of Technology and Economics, Faculty of Civil Engineering, Department of Hydraulic and Water Resources Engineering

Rózsa CSOMA civil engineer (1985.), Ph.D. (2007. Thesis: Analytic Elements with Regular and Irregular Shape to Model Groundwater Flow) is associated professor at the Department of Hydraulic and Water Resources Engineering, Budapest University of Technology and Economics. Several B.Sc., M.Sc., Ph.D., and advanced courses are taught in in the field of Hydraulics, Hydraulic Engineering, Groundwater, and their special chapters (most courses also in English, the basic courses in German as well). Supervised more than 110 Diploma Thesis. Research field is seepage and groundwater hydraulics, hydraulic engineering structures, semi analytical and numerical modelling of flow and transport processes. Member of the Hungarian Hydrological Society since 1983, where in 2021, Pro Aqua prize was awarded. Graduate students under her supervision won approx. 10 prizes at the Diploma Thesis Competition of the Society.

Flóra Wágner, Budapest University of Technology and Economics, Faculty of Civil Engineering, Department of Hydraulic and Water Resources Engineering

FLÓRA WAGNER  certified infrastructure construction engineer (2020), design engineer, PhD student at the Department of Water Engineering and Water Management of the Budapest University of Technology and Economics. His PhD research topic is the investigation of water flow-groundwater interaction in inland areas. In the civil engineering training, he participates in the teaching of the subjects Hydrology, Water construction, water management, Underground water and Transportation earthworks and drainage. Since 2017, he has been a member of the Hungarian Hydrological Society and a senior member of the Water Engineering Department of the Zielinski Szilárd College of Civil Engineering.

References

Altnőder A., Aujeszky G., Scheuer Gy. (1989). Dunaföldvár-déli országhatár közötti Duna-jobbparti partiszűrésű vízszerzés lehetőségei. Hidrológiai Közlöny 69. évf. 3. szám, pp. 159-167.

Aujeszky G., Petz R., Sajgó Zs., Scheuer Gy. (1990). Új partiszűrésű vízbázis a Duna bal partján Tassnál. Hidrológiai Közlöny 70. évf. 3. szám,, pp. 162-172.

Bear, J. (1972). Dynamics of Fluids in Porous Media. American Elsevier Publishing Company Inc. New York

Bear, J. (1979). Hydraulics of Groundwater. McGraw-Hill Inc. New-York.

Bogárdi J. (1979). Hidromechanika. Egyetemi jegyzet, J9-945. Tankönyvkiadó, Budapest.

Busch, K.F., Luckner, L. (1972). Geohydraulik. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig.

Csiszár E. (2020). Kihívások a Tass, Gudmon-foki parti szűrésű regionális vízbázis üzemeltetésében. Hidrológiai Közlöny 100. évf. 1. szám, pp. 70–79.

Csoma R. (2023). A szivárgási tényező jelentősége kavicsbányatavak hatásvizsgálata esetén. Hidrológiai Közlöny 103. évf. 4. szám, pp. 52-62. https://doi.org/10.59258/hk.13174

Csoma R., Wagner F. (2021). A talajvízmozgás modellezése külműveléses kavicsbányák esetén. Magyar Hidrológiai Társaság XXXVIII. Országos Online Vándorgyűlés, p. 20.

Csoma R., Wagner F. (2022). Visszatöltési megoldások kavicsbányatavak kedvezőtlen hatásainak csökkentésére. Magyar Hidrológiai Társaság XXXIX. Országos Vándorgyűlés, p. 21.

Csoma R., Wagner F. (2023). Kavicsbányászat és vízbázisvédelem érdekeinek összehangolása megfelelő védőtöltés kialakításával Magyar Hidrológiai Társaság XL. Országos Vándorgyűlés, p. 13.

Igrici-Kavics Kft. https://igricikavics.hu/hazai-kavicslelohelyek (Letöltés: 2023.)

Németh E. (1963). Hidromechanika. Egyetemi segédkönyv. Tankönyvkiadó, Budapest.

Országos Környezetvédelmi Információs Rendszer (OKIR). http://webgis.okir.hu/base/ (Letöltés: 2023)

TNO Hydrologisch Colloquium (1964). Steady Flow of Ground Water Towards Wells. The Hague.

/1997. (VII. 18.) Kormányrendelet a vízbázisok, a távlati vízbázisok, valamint az ivóvízellátást szolgáló vízilétesítmények védelméről.

/2004. (VII. 21.) Kormányrendelet a felszín alatti vizek védelméről.

Published
2024-04-21
How to Cite
CsomaR., & WágnerF. (2024). The method of images applied to determine the size of backfills to protect drinking water base in the neighbourhood of gravel pits. Hungarian Journal of Hydrology, 104(2/HU), 50-63. https://doi.org/10.59258/hk.15661
Section
Tudományos közlemények