The present and perspectives of rare earth elements mining in the world
Abstract
As we enter the accelerated automation era and the so-called green revolution, the demand for rare earth elements (REE) grows. But what are these elements? Fifteen of them belong to the lanthanoids or lanthanides: lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), as well as yttrium (Y) and scandium (Sc) from the transition metals. The main REE ore-minerals are bastnäsite, monazite, loparite and ion adsorption clays. The fi rst three occur in carbonate or phosphate primary deposits, while the clay type of enrichments is related to sedimentation. There are many deposits around the globe, but few have been assessed so far. In recent years, the Chinese hegemony in extraction and resource/reserve evaluation seems to be breaking down. More and more countries are entering the rare earth elements market and conducting explorations. That is welcome news in respect of mutual raw material security, especially in the shadow of global phenomena such as the coronavirus, chip shortages, or monopoly situations. At the same time, Europe is trying to catch up and assess its raw material potential somewhat behind schedule. The following conclusions are made about the world’s rare earth deposits and their potential. China, the most dominant player in the market, has vast carbonatite and hydrothermal mineralization. Mining of ion adsorption clays is significant too. The next big player in rare earth mining in Asia could be Vietnam, but Russia and India also have enormous reserves. Looking at North America, the USA is dominated by carbonatite deposits, such as Elk Creek, while in Canada, they are more of hydrothermal origin. In South America, Brazil is considered to have the third largest reserves of rare earths. Australia is a dominant player both in extraction and in terms of net mineral wealth. Africa’s rare earth mining occurs in Madagascar from high-quality ion adsorption plants. The Republic of South Africa has one of the best monazite deposits in the world. Additional carbonatite deposits occur in the Democratic Republic of Congo, Tanzania, etc. The dependence of the European Union on raw materials and the achievement of the climate goals set in the Green Deal can be promoted by such crucial discoveries as the Swedish Per Greijer deposit this year. Europe’s more well-explored raw material deposits are located in Scandinavia and Greenland, such as the carbonate Fen, Alnö, or the complex peralkaline Kvanefjeld. Many European Raw Material Alliance partners are exploring further opportunities across the continent.
References
Hiskey J. B., Copp R. G. (2018): Solvent extraction of yttrium and rare earth elements from copper pregnant leach solutions using Primene JM-T. Minerals Engineering, 125, 265-270. https://doi.org/10.1016/j.mineng.2018.06.014
Han K. N., Kellar J. J., Cross W. M., Safarzadeh S. (2014): Opportunities and challenges for treating rare-earth elements. Geosystem Engineering, 17/3, 178-194. https://doi.org/10.1080/12269328.2014.958618
Peelman S., Sun Z. H. I., Sietsma J., Yang Y. (2016): Leaching of rare earth elements. Review of past and present technologies. In. De Lima I. B., Filho W. L. (eds). Rare Earths Industry. 1st Edition, Technological, Economic, and Environmental Implications, pp. 319-334. https://doi.org/10.1016/B978-0-12-802328-0.00021-8
Dushyantha N., Batapola N., Ilankoon I. M. S. K., Rohitha S., Premasiri R., Abeysinghe B., Ratnayake N., Dissanayake K. (2020): The story of rare earth elements (REEs): Occurrences, global distribution, genesis, geology, mineralogy and global production. Ore Geology Reviews, 122, 10352. https://doi.org/10.1016/j.oregeorev.2020.103521
Barakos G., Gutzmer J., Mischo H. (2016): Strategic evaluations and mining process optimization towards a strong global REE supply chain. Journal of Sustainable Mining, 15, 26-35. https://doi.org/10.1016/j.jsm.2016.05.002
Balaram V. (2019): Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers, 10/4, 1285-1303. https://doi.org/10.1016/j.gsf.2018.12.005
Alonso E., Sherman A. M., Wallington T. J., Everson M. P., Field F. R., Roth R., Kirchain R. E. (2012): Evaluating rare earth element availability: A case with revolutionary demand from clean technologies. Environ. Sci. Technol., 46, 3406-3414. https://doi.org/10.1021/es203518d
Yang X. J., Lin A., Li X-L., Wu Y., Zhou W., Chen Z. (2013): China's ion-adsorption rare earth resources, mining consequences and preservation. Environmental Development, 8, 131-136. https://doi.org/10.1016/j.envdev.2013.03.006
Haschke M., Ahmadian J., Zeidler L., Hubrig T. (2016): In-situ recovery of critical technology elements. "SYMPHOS 2015", 3rd International Symposium on Innovation and Technology in the Phosphate Industry, Procedia Engineering, 138, 248-257. https://doi.org/10.1016/j.proeng.2016.02.082
Bisaka K., Thobadi I. C., Pawlik C. (2017): Extraction of rare earths from iron-rich rare earth deposits. The Journal of the Southern African Institute of Mining and Metallurgy, 117, 731-739. https://doi.org/10.17159/2411-9717/2017/v117n8a2
Smith Y. R., Kumar P., McLennan J. D. (2017): On the extraction of rare earth elements from geothermal brines. Resources, 6/3, 39, 1-16. https://doi.org/10.3390/resources6030039
https://www.nytimes.com/2021/04/08/technology/taiwan-drought-tsmc-semiconductors.html
https://www.reuters.com/article/instant-article/idINL4N2BI1JR
Zhou B., Li Zhongxue, Chen C. (2017): Global potential of rare earth resources and rare earth demand from clean technologies. Minerals, 7, 203. https://doi.org/10.3390/min7110203
Barteková E., Kemp R. (2016): National strategies for securing a stable supply of rare earths in different world regions. Resources Policy, 49, 153-164. https://doi.org/10.1016/j.resourpol.2016.05.003
Ho P., Zhao H. (2021): Mining conflict and rent-seeking in China: A mixed method analysis of cases of illegality. The Extractive Industries and Society, 101031 (in press). https://doi.org/10.1016/j.exis.2021.101031
Wang Z. Y., Fan H. R., Zhou L., Yang K. F., She H. D. (2020): Carbonatite-related REE deposits: An overview. Minerals, 10, 965. https://doi.org/10.3390/min10110965
Fan H. R., Yang K-F., Hu F. F., Liu S., Wang K. Y (2016): The giant Bayan Obo REE-Nb-Fe deposit, China: Controversy and ore genesis. Geoscience Frontiers, 7, 335-344. https://doi.org/10.1016/j.gsf.2015.11.005
Ilankoon I. M. S. K., Tang Y., Ghorbani Y., Northey S., Yellishetty M., Deng X., McBride D. (2018): The current state and future directions of percolation leaching in the Chinese mining industry. Challenges and opportunities. Minerals Engineering, 125, 206222. https://doi.org/10.1016/j.mineng.2018.06.006
Goodenough K. M., Schilling J., Jonsson E., Kalvig P., Charles N., Tuduri J., Deady E. A., Sadeghi M., Schiellerup H., Müller A., Bertrand G., Arvanitidis N., Eilopoulos D. G., Shaw R. A., Thrane K., Neulen N. (2016): Europe's rare earth element resource potential: An overview of REE metallogenetic provinces and their geodynamic setting. Ore Geology Reviews, 72, 838-856. https://doi.org/10.1016/j.oregeorev.2015.09.019
https://www.mining.com/greenland-bans-uranium-mining-blocking-vast-rare-earths-project/
Thrane K., Kalvig P., Keulen N. (2014): REE deposits and occurrences in Greenland. ERES2014: 1st European Rare Earth Resources Conference |Milos| 04‐07/09/2014.
Marks M. A. W., Markl G. (2017): A global review on agpatic rocks. Earth-Science Reviews, 173, 229-258. https://doi.org/10.1016/j.earscirev.2017.06.002
Sørensen H., Bohse H., Bailey J .C. (2006): The origin and mode of emplacement of lujavrites in the Ilímaussaq alkaline complex, South Greenland. Lithos, 91, 286-300. https://doi.org/10.1016/j.lithos.2006.03.021
Andersen T. (1988): Evolution of peralkaline calcite carbonatite magma in the Fen complex, southeast Norway. Lithos, 22, 99-112. https://doi.org/10.1016/0024-4937(88)90019-9
Meert J. G., Torsvik T. H., Eide E. A., Dahlgren S. (1998): Tectonic significance of the Fen province, S. Norway: Constraints from geochronology and paleomagnetism. The Journal of Geology, 106, 553-564. https://doi.org/10.1086/516041
Walters A. S., Goodenough K. M., Hughes H. S. R., Roberts N. M. W., Gunn A. G., Rushton J., Lacinska A. (2013): Enrichment of rare earth elements during magmatic and post-magmatic processes: A case study from the Loch Loyal Syenite Complex, northern Scotland. Contrib. Mineral Petrol., 166, 1177-1202. https://doi.org/10.1007/s00410-013-0916-z
Montero P. B., Floor P., Castanon L. G. C. (1998): The accumulation of rare-earth and high-field-strength elements in peralkaline granitic rocks: The Galiñeiro orthogneissic complex, northwestern Spain. The Canadian Mineralogist, 36/3.
Papadopoulos A., Tzifas I. T., Tsikos H. (2019): The potential for REE and associated critical metals in coastal sand (placer) deposits of Greece: A review. Minerals, 9, 469. https://doi.org/10.3390/min9080469
Deady É., Richard S., Goodenough K. (2017): Research and development for the rare earth element supply chain in Europe. Eurare, 40 pp.
Deady É., Mouchos E., Goodenough K., Williamson B., Wall F. (2014): Rare earth elements in karst-bauxites: A novel untapped European resource? ERES2014: 1st European Rare Earth Resources Conference |Milos| 04-07/09/2014.
Honour V. C., Goodenough K. M., Shaw R. A., Gabudianu I., Hirtopanu P. (2018): REE mineralisation within the Ditrău Alkaline Complex, Romania: Interplay of magmatic and hydrothermal processes. Lithos, 314-315, 360-381. https://doi.org/10.1016/j.lithos.2018.05.029
Lengyel A., Lakatos J. (2011): Vörösiszap hasznosításának lehetőségei - Possibilities of utilization of red mud. Anyagmérnöki Tudományok, 36/1, 35-48.
Nyirádi Zs. (2012): Vörösiszap hasznosítás, falazóblokk és vasklorid termelése mellett, a titán és ritkaföldfém tartalom kinyerésével. Synpetrol Hungary, Inc.
M. Tóth T., Schubert F., Raucsik B., Fintor K. (2019): Mineralogical and geochemical constraints of the REE accumulation in the Almásfüzitő red mud depository in northwest Hungary. Applied Sciences, 9, 3654. https://doi.org/10.3390/app9183654
https://www.niocorp.com/elk-creek-project/
Néron A., Bédard L. P., Gaboury D. (2018): The Saint-Honoré carbonatite REE zone, Québec, Canada: Combined magmatic and hydrothermal processes. Minerals, 8, 397. https://doi.org/10.3390/min8090397
Smith M. P., Moore K., Kavecsánszki D., Finch A. A., Kynicky J., Wall F. (2016): From mantle to critical zone: A review of large and giant sized deposits of the rare earth elements. Geoscience Frontiers, 7, 315-334. https://doi.org/10.1016/j.gsf.2015.12.006
Chau N. D., Jadwiga P., Adam P., Hao D. V., Phon L. K., Pawel J. (2017): General characteristics of rare earth and radioactive elements in Dong Pao deposit, Lai Chau, Vietnam. Vietnam Journal of Earth Sciences, 39/1, 14-26. https://doi.org/10.15625/0866-7187/39/1/9181
Malkova M. Y., Zadiranov A. N., Zaya K., Dkhar P. (2020): Ore of the Tomtor rare-earth deposit for its industrial processing. Journal of Physics: Conference Series, 1687, 012038. https://doi.org/10.1088/1742-6596/1687/1/012038
https://www.srk.com/en/projects/tomtor-resource-reserve-estimation
Estrade G., Marquis E., Smith M., Goodenough K., Nason P. (2019): REE concentration processes in ion adsorption deposits: Evidence from the Ambohimirahavavy alkaline complex in Madagascar. Ore Geology Reviews, 112, 103027. https://doi.org/10.1016/j.oregeorev.2019.103027
https://news.mongabay.com/2017/11/another-blow-to-troubled-madagascar-rare-earth-mine/
https://www.steenkampskraal.com/geology/
Olivo G. R., Williams-Jones A. E. (1999): Hydrothermal REE-rich eudialyte from the Pilanesberg Complex, South Africa, 37/3, 653-663.