Technological overview of the green transition of the steel industry and its techno-economic implications

  • Beáta Buró Miskolci Egyetem, SteelTech-Center
Keywords: carbon dioxide emissions, low carbon development, green iron and steel industry, economic implication

Abstract

The purpose of the Paris Agreement is to coordinate the global response to climate change caused by global warming. Global greenhouse gas emissions must fall by 33–41 Gt CO2e (Gigatons of CO2 equivalent) by 2030 and by 8–20 Gt CO2e by 2050 to meet the Paris Agreement’s temperature target. Steel is an essential material in modern life. Although the iron and steel industry is responsible for more than 7% of the world’s greenhouse gas emissions. A number of low- or zero-carbon steelmaking projects are planned or underway to reduce carbon footprints and produce green steel. However, achieving drastic reductions in CO2 emissions requires a new, transformative approach to iron and steel production. Globally, the largest share of steel greenhouse gas emissions from the iron and steel industry comes from integrated processes, where coal, coke and gas is used to reduce iron ore to produce pig iron. The other signifi cant proportion of the emission comes from the power generation required to operate electric arc furnaces (EAF) and rolling mills. There are several approaches to achieving signifi cant reductions in carbon dioxide emissions in the steel industry. The main approaches can be grouped as circular economy, technologies for CO2 reduction and avoidance of direct carbon dioxide emissions. The green transition of the iron and steel industry, on the other hand, has many technical and economic aspects: technology, infrastructure, capital, operating costs, demand and policies. The transition is a global challenge that requires a global response and will require collaboration between countries, public and private stakeholders.

References

Attwood D. J. (2023. 06 26): Green Steel Demand is Rising Faster Than Production Can Ramp Up. Forrás: https://about.bnef.com/blog/green-steel-demand-is-rising-faster-than-production-can-ramp-up/

BCG (2022. 02 16): Transforming the Steel Industry May Be the Ultimate Climate Challenge. Forrás: Metals and mining industry: https://www.bcg.com/publications/2022/steel-industry-carbon-emissions-challenge-solutions

Bhaskar A. A. (2022): Journal of Cleaner Production. Decarbonizing primary steel production: Techno-economic assessment of a hydrogen based green steel production plant in Norway. https://doi.org/10.1016/j.jclepro.2022.131339

Blinken (2021. 02. 1.): Forrás: US Department of State. https://www.state.gov/the-united-states-officially-rejoins-the-paris-agreement/

Cachola C. S. (2023): Capture technologies: Improve- ments and promising developments. Carbon Cap- ture Science & Technology. https://doi.org/10.1016/j.ccst.2023.100102

Carbon Trust (2023. 06. 20.): Forrás: Carbon Trust: https://ctprodstorageaccountp.blob.core.windows.net/prod-drupal-files/documents/resource/public/International%20Carbon%20Flows%20-%20Steel%20-%20RE-PORT.pdf

Draxler S. K. (2021. 03.): Greensteel for Europe. forrás: Technology Assessment and Roadmapping: https://www.estep.eu/assets/Uploads/D1.2-Technology-Assessment-and-Roadmapping.pdf (Letöltés dátuma: 2024. 02. 02.)

Electra (dátum nélk.): Low-temperature iron with zero carbon emissions. Forrás: https://www.electra.earth/technology/ (Letöltés dátuma: 2024. 02. 04.)

EUROFER (2019. 11.): Low carbon roadmap. Forrás: Path- ways to a CO2-neutral European steel industry: https:// www.eurofer.eu/assets/publications/reports-or-studies/low-carbon-roadmap-pathways-to-a-co2-neutral-european-steel-industry/EUROFER-Low-Carbon-Ro- admap-Pathways-to-a-CO2-neutral-European-Steel-Industry.pdf (Letöltés dátuma: 2024. 02. 06.)

European Commission (2023. 10. 9.): Commission welcomes completion of key 'Fit for 55' legislation, putting EU on track to exceed 2030 targets. Forrás: European Commision: https://ec.europa.eu/commission/presscorner/detail/en/IP_23_4754

Fan F. (2021): Low-carbon production of iron and steel: Technology options, economic assessment, and policy. Joule, P829-86. https://doi.org/10.1016/j.joule.2021.02.018

Financing thegreen transition (2023. 1.): Forrás: https://issuu.com/stateofgreen/docs/sog_whitepaper_financing2023_210x297_v06_web?fr=sMmNkZDY4NTc4O-TA&submissionGuid=c0097cb3-e5d9-44d2-a47e-d7130d788f55 (Letöltés dátuma: 2024. 03. 10.)

Fischedick M. W. (2014): Techno-economic evaluation of innovative steel production technologies. Journal for Cleaner Production, pp. 563-580. https://doi.org/10.1016/j.jclepro.2014.05.063

Fleischanderl, D. A. (2023): Green steel in motion - iron feedstock meets renewable energy. (old.: Primetals). Abu Dhabi: WSA-Breakthrough Technology Conference.

Forum W. E. (2014): Scoping paper: Mining and metals in a sustainable world. Forrás: https://www3.weforum.org/docs/WEF_MM_MiningMetalSustainableWorld_ScopingPaper_2014.pdf

Global CCS (2022): Forrás: Global status of CCS 2022. https://status22.globalccsinstitute.com/wp-content/uploads/2022/10/Global-Status-of-CCS-2022-Report-Final-compressed.pdf (Letöltés dátuma: 2024. 02. 02.)

Green Steel World Editorial Team (2022. 08. 11.): Green steel world. Forrás: HYBRIT - A trailblazer in steel industry's green revolution: https://greensteelworld.com/hybrit-a-trailblazer-in-steel-industrys-green-revolution (Letöltés dátuma: 2024. 02. 02.)

Griffin H. (2021): The prospects for 'green steel' making in a net-zero economy: A UK perspective. Global Transitions, Vol. 3, pp. 72-86. https://doi.org/10.1016/j.glt.2021.03.001

Holappa L. (2020. Aug. 19.): Mdpi. Forrás: A general vision for reduction of energy consumption and CO2 emissions from the steel industry. https://doi.org/10.3390/met10091117

Hornby S. (2022): Forrás: https://www.researchgate.net/publication/354477453_Impact_of_Hydrogen_DRI_on_EAF_Steelmaking

IEA (2020. 10.): Iron and steel technology roadmap. Forrás: International Energy Agency. https://www.iea.org/reports/iron-and-steel-technology-roadmap (Letöltés dátuma: 2023. 10.)

IEA (2021. 09.): An energy sector roadmap to carbon neutrality in China. Forrás: https://www.iea.org/reports/an-energy-sector-roadmap-to-carbon-neutrality-in-china

INVESTMENTS, U. T. (2023. 04.): Forrás: https://www.energy-transitions.org/wp-content/uploads/2023/04/Unlocking-the-First-Wave-of-Breakthrough-Steel-In- vestments-International-Opportunities-April-2023.pdf (Letöltés dátuma: 2024. 02. 29.)

John J. S. (2023. 10. 15.): Electrowinning' could help win the race to clean up dirty steel. Forrás: Canary Media: https://www.canarymedia.com/articles/clean-industry/electrowinning-could-help-win-the-race-to-clean-up-dirty-steel (Letöltés dátuma: 2024. 02. 04.)

Jun Zhao H. Z. (2020): Ironmaking & steelmaking. Forrás: Review of green and low-carbon ironmaking technology.(Letöltés dátuma: 2024. 02. 04.) https://doi.org/10.1080/03019233.2019.1639029

KSH (2023): Az üvegházhatású gázok kibocsátása. Forrás: Fenntartható fejlődés indikátorai. https://www.ksh.hu/ffi/3-1.html

Lang, Köpf, Valery. (dátum nélk.): Metso. Forrás: Circored fine ore direct reduction - a proven process to decarbonize steelmaking. https://www.metso.com/insights/blog/mining-and-metals/circored-fine-ore-direct-reduction-a-proven-process-to-decarbonize-steelma-king/?r=3 (Letöltés dátuma: 2024. 02. 02.)

Li L. W. (2023. 02. 12.): Simulation of fluidization quality for various reduced-gas composition and agitation speed circumstances in a gas-solid fluidized bed with an inclined agitator. Forrás: MDPI: https://www.mdpi.com/2075-4701/13/2/376 (Letöltés dátuma: 2024. 02. 04.) https://doi.org/10.3390/met13020376

Mandova H., Leduc S., Wang C., Wetterlund E., Patrizio P., Gale W., Kraxner F. (2018): Biomass and bioenergy. Forrás: https://www.sciencedirect.com/science/article/pii/S0961953418301107?via%3Dihub

Martin Pei Markus P. A. (2020. 07. 18.): MDPI. Forrás: Toward a fossil free future with HYBRIT: Develop- ment of iron and steelmaking technology in Sweden and Finland: https://www.mdpi.com/2075-4701/10/7/972 (Letöltés dátuma: 2023. 02. 01.) https://doi.org/10.3390/met10070972

Mayer B. S. (2019): Macroeconomic implications of switching to process-emission-free iron and steel production in Europe. Journal of Cleaner Production, pp. 1517-1533. https://doi.org/10.1016/j.jclepro.2018.11.118

McKinsey (2020): Decarbonization challenge for steel. Forrás: https://www.mckinsey.com/industries/metals-and-mining/our-insights/decarbonization-challenge-for-steel

MIDREX (2017. 09.): MIDREX. Forrás: MIDREX H2: Ultimate low CO2 ironmaking and its place in the new hydrogen economy. https://www.midrex.com/tech-article/midrex-h2-ultimate-low-co2-ironmaking-and-its-place-in-the-new-hydrogen-economy/ (Letöltés dátuma: 2024. 02. 01.)

Mission Possible Partnership (2022. 06.): Making net-zero steel possible. Forrás: Steel transition strategy. https://missionpossiblepartnership.org/wp-content/uploads/2022/09/Making-Net-Zero-Steel-possible.pdf

Muslemani L. K. (2021): Opportunities and challenges for decarbonizing steel production by creating markets for 'green steel' products. Journal of Cleaner Production, 128127. https://doi.org/10.1016/j.jclepro.2021.128127

Nodin D. (2008. 05.): The tecnored ironmaking process. Part 1 - Competitiveness and pilot development work. https://doi.org/10.1179/174328108X301705

OECD (2022. 11.): Assessing steel decarbonisation ready for the decade of delivery? Forrás: https://www.oecd.org/industry/ind/assessing-steel-decarbonisation-progress.pdf

OECD.Stat. (dátum nélk.): Forrás: Greenhouse gas emissions: https://stats.oecd.org/Index.aspx?DataSetCode=-air_ghg#

Pickens N. (2023. 06. 26.): Why scrap metal is an opportunity too good to waste. Forrás: Wood Mackenzie: https://www.woodmac.com/news/opinion/scrap-metal-opportunity/

Radloff A. W. (2023): An integrative and prospective approach to regional material flow analysis: Modeling the decarbonization of the North Rhine-Westphalian steel industry. https://doi.org/10.1111/jiec.13387

Rhamdhani M. S. (2023): Decarbonisation and hydrogen integration of steel industries: Recent development, challenges and technoeconomic analysis. Journal of Cleaner Production. (Letöltés dátuma: 2024. 01. 24.) https://doi.org/10.1016/j.jclepro.2023.136391

SIDERWIN (2023. 03. 23.): Siderwin. Forrás: SIDER-WIN_Concluding_webinar2023_slides.https://zenodo.org/records/7785032#.ZCVyxXZByUk (Letöltés dátuma: 2024. 02. 02.)

Steel T. (2020): HISARNA. Forrás: Building a sustainab- le steel industry: https://www.tatasteeleurope.com/sites/default/files/tata-steel-europe-factsheet-hisarna.pdf (Letöltés dátuma: 2024. 02. 06.)

Steelonthenet (2023): Steel industry emissions of CO2. Forrás: https://www.steelonthenet.com/kb/co2-emissions.html

Team G. S. (2022. 08. 11.): Green steel world. Forrás: HY- BRIT - A trailblazer in steel industry's green revolution: https://greensteelworld.com/hybrit-a-trailblazer-in-steel-industrys-green-revolution (Letöltés dátuma: 2024. 02. 02.)

UN (2023): Forrás: Broken Record. https://wedocs.unep.org/bitstream/handle/20.500.11822/43922/EGR2023.pdf?sequence=3&isAllowed=y

US Department of State (2021. 11.): The long-term stra- tegy of the United States. Forrás: Pathways to net-zero greenhouse gas emissions by 2050. https://www.whitehouse.gov/wp-content/uploads/2021/10/US-Long-Term-Strategy.pdf

Wang Z. B. (2021): Hydrogen direct reduction (H-DR) in steel industry - An overview ofchallenges and opportunities. Journal of Cleaner Production, 129797 https://doi.org/10.1016/j.jclepro.2021.129797

World Economic Forum (2022): Net-Zero Industry Tracker 2022 Edition.

World Resources Institute (2004): World Business Council for Sustainable Development. Forrás: The Greenhouse Gas Protocol - A corporate accounting and reporting standard. https://ghgprotocol.org/sites/default/files/standards/ghg-protocol-revised.pdf

WorldSteel (2021): Electrolysis in ironmaking. For- rás: https://worldsteel.org/wp-content/uploads/Fact-sheet-Electrolysis-in-ironmaking.pdf

WorldSteel (2022): Sustainability indicators. Forrás: WorlsSteel Association. https://worldsteel.org/wp-content/uploads/Sustainability-Indicators-2022-report.pdf

Worldsteel (2023. 11.): Steel demand forecasts. Forrás: WorldSteel Association. https://worldsteel.org/wp-content/uploads/worldsteel-Short-Range-Outlook-October-2023_table.pdf

WorldSteel (2023): WorldSteel Association. Forrás: Sep- tember 2023 crude steel production. https://world-steel.org/media-centre/press-releases/2023/september-2023-crude-steel-production/

WorldSteel Association (2023): World steel in figures 2023. Forrás: https://worldsteel.org/wp-content/uploads/World-Steel-in-Figures-2023-4.pdf

WSA CCUS (2023): Fact sheet - Carbon capture and sto- rage and use (CCSU). Forrás: World Steel Association. https://worldsteel.org/wp-content/uploads/Carbon-capture-use-and-storage-2023.pdf (Letöltés dátuma: 2024. 02. 02.)

Yan H. H. (2023. 02. 15.): Metallurgical and materials. (Letöltés dátuma: 2024. 02. 04.) https://doi.org/10.31674/mjn.2024.v15i04.001

Zarl, Farkas, Schenk (2020. 10.): MPDI. Forrás: A study on the stability fields of arc plasma in the HPSR process. (Letöltés dátuma: 2024. 0. 02.) https://doi.org/10.3390/met10101394

Zhang S. X. (2023): The CO2 emission reduction path towards carbon neutrality in the Chinese steel industry: A review. Environmental Impact Assessment Review. https://doi.org/10.1016/j.eiar.2022.107017

Published
2024-09-11
How to Cite
BuróB. (2024). Technological overview of the green transition of the steel industry and its techno-economic implications. Bányászati és Kohászati Lapok, 157(1), 41-50. Retrieved from https://ojs.mtak.hu/index.php/bkl/article/view/17102
Section
Cikkek