On the equations of motion and the stability of the railway wheelset
Abstract
Studies on the geometry and motion of railway wheelsets go back nearly a century and a half, and there are still a signifi cant number of new fi ndings. It is common practice to describe the railway wheelset as a two degree of freedom system, less than expected from the rigid body model, but an exhaustive explanation of this is lacking in the literature. In this paper, we form the equations of motion of the railway wheelset and show why certain equations do not aff ect the vibrations in the linear case and how the use of the two degree of freedom model can be explained. A vibrating wheelset usually becomes unstable when a certain critical speed is reached, which speed depends on the parameters of the wheel and the vehicle. Our aim is to show how the critical speed can be increased by varying the parameters so that the loss of stability does not occur during the vehicle’s operation. In this paper we investigate the eff ect of the conicity of the wheels and stiff ness of the suspension.
References
Antali M.: Dynamics of Dual-Point Rolling Bodies. PhD-értekezés, Budapesti Műszaki és Gazdaságtudományi Egyetem, Budapest, 2018
Wickens A. H.: Fundamentals of Rail Vehicle Dynamics. Swets & Zeitlinger Publishers, Lisse, 2007, 300 p.
Wickens A. H.: A History of Railway Vehicle Dynamics. In: Iwnicki S., Spiryagin M., Cole C., McSweeney, T. (eds.): Handbook of Railway Vehicle Dynamics, CRC Press, Boca Raton, 2019, 5-38. https://doi.org/10.1201/9780849333217.ch2
Iwnicki S.: Simulation of wheel-rail contact forces. Fatigue & Fracture of Engineering Materials and Structures, 26/10 (2003) 887-900. https://doi.org/10.1046/j.1460-2695.2003.00699.x
Finta E.: Tervezési és gyártási paraméterek hatása vasúti kerék rezgéseire. Szakdolgozat, Széchenyi István Egyetem, Győr, 2023
Orlova A., Boronenko Y.: The anatomy of railway vehicle running gear. In: Iwnicki S., Spiryagin M., Cole C., McSweeney T. (eds): Handbook of Railway Vehicle Dynamics, CRC Press, Boca Raton, 2019, 40-83.
Heumann H.: Lauf der Drehgestell-Radsatze in der Geraden. Organ für die Fortschritte des Eisenbahnwesens, 92 (1937) 149-173.
Klingel J.: Über den Lauf von Eisenbahnwagen auf gerader Bahn. Organ für die Fortschritte des Eisenbahnwesens, 38 (1883) 113-123.
Reynolds O.: On rolling friction. Philosophical Transactions, 166 (1876) 155. https://doi.org/10.1098/rstl.1876.0006
Mousavi S. A., Shirazi K. H., Fatahi L.: Eff ect of dynamic creep coeffi cients and external load on hunting velocity in a railway vehicle. Acta Polytechnica Hungarica, 19/6 (2022) 143-161. https://doi.org/10.12700/APH.19.6.2022.6.11
Szabó Zs., Lóránt G.: Parametric excitation of a single railway wheelset. Vehicle System Dynamics, 33/1 (2000) 49-55. https://doi.org/10.1076/0042-3114(200001)33:1;1-5;FT049
Meijaard J. P: The motion of a railway wheelset on a track or on a roller rig. Procedia IUTAM, 19 (2016) 274-281. https://doi.org/10.1016/j.piutam.2016.03.034
Wu X., Chi M.: Parameters study of hopf bifurcation in railway vehicle system. Journal of Computational and Nonlinear Dynamics, 10/3 (2015) 031012. https://doi.org/10.1115/1.4027683
Guo J., Shi H., Luo R., Zeng J.: Bifurcation analysis of a railway wheelset with nonlinear wheel-rail contact. Nonlinear Dynamics, 104 (2021) 989-1005. https://doi.org/10.1007/s11071-021-06373-8
Antali M., Stépán G.: On the nonlinear kinematic oscillations of railway wheelsets. Journal of Computational and Nonlinear Dynamics, 11/5 (2016) 051020. https://doi.org/10.1115/1.4033034
Lóránt G., Stépán G.: The role of non-linearities in the dynamics of a single railway wheelset. Machine Vibration, 5 (1996) 18-26.