Perspektívák az inváziós fajok gyérítésében: Tanulságok az I. Budapesti Rákász Napról (Crustacea: Decapoda)

  • Székely Áron Eötvös Loránd Tudományegyetem, Biológiai Intézet; ArtEnto Alapítvány – Fiatal Entomológusok Klubja Kutatócsoport
  • Schlitt Bence Péter Eötvös Loránd Tudományegyetem, Biológiai Intézet; ArtEnto Alapítvány – Fiatal Entomológusok Klubja Kutatócsoport; Magyar Nemzeti Múzeum Közgyűjteményi Központ – Magyar Természettudományi Múzeum, Állattár
  • Jásdi Mihály Eötvös Loránd Tudományegyetem, Biológiai Intézet; ArtEnto Alapítvány – Fiatal Entomológusok Klubja Kutatócsoport; HUN-REN Ökológiai Kutatóközpont, Vízi Ökológiai Intézet; Magyar Tudományos Akadémia – Ökológiai Kutatóközpont Lendület Folyóvízi Ökológia Kutatócsoport
  • Lóczi Zsolt ArtEnto Alapítvány – Fiatal Entomológusok Klubja Kutatócsoport; HUN-REN Agrártudományi Kutatóközpont, Növényvédelmi Intézet, Állattani Osztály; Magyar Agrár- és Élettudományi Egyetem, Biológia Tudományi Doktori Iskola
  • Mészáros Ádám ArtEnto Alapítvány – Fiatal Entomológusok Klubja Kutatócsoport; Eötvös Loránd Tudományegyetem, Környezettudományi Doktori Iskola
Kulcsszavak: allometria, Barát-patak, citizen science, inváziós fajok, terepi mérés, tízlábú rákok, városökológia

Absztrakt

A biológiai inváziók a 21. század legsúlyosabb ökológiai kihívásai közé tartoznak. Az egyik leghírhedtebb édesvízi gerinctelen özönfaj Európában az észak-amerikai eredetű vörös mocsárrák (Procambarus clarkii [Girard, 1852]). Jelen tanulmány során egy nagyszabású “citizen science” rákgyérítő eseményt szerveztünk Budapesten, a Barát-patak befolyójánál, ahol a résztvevők egy új, standardizált gyűjtési protokoll alapján vehettek részt a példányok begyűjtésében. A módszer hatékonyságának tesztelése és a lakosság bevonása mellett célunk volt a terepen gyűjtött morfológiai adatok alapján az allometrikus növekedés kvantitatív meghatározása, valamint az ilyen típusú eseményekből kiinduló további kutatási lehetőségek feltérképezése. A több, mint 150 önkéntes résztvevő által gyűjtött összesen 1194 példány elemzése alapján megállapítható, hogy a tesztelt protokoll igen hatékonynak bizonyult, és a jövőbeli gyérítési akciók alapját képezheti. A résztvevők sikeresen követték a protokollt, miközben a képzett koordinátorok képesek voltak nagy mennyiségű biotikus adat mérésére az egyes gyűjtési blokkok között. A morfometriai elemzések alapján mindkét ivarnál negatív allometrikus növekedést találtunk, ami szuboptimális tulajdonságú élőhelyre utal, és további kérdéseket vet fel a vizsgált populációval kapcsolatban. Összességében úgy véljük, hogy az ilyen lakossági részvételen alapuló gyérítési események értékes kiegészítői lehetnek a professzionális élőhelykezelési gyakorlatnak.

Hivatkozások

Alcorlo, P., Geiger, W., Otero, M. (2004): Feeding Preferences and Food Selection of the Red Swamp Crayfish, Procambarus clarkii, in Habitats Differing in Food Item Diversity. Crustaceana 77(4): 435–453. https://doi.org/10.1163/1568540041643283

Anderson, O. R., Neumann, R. M. (1996): Length, weight and associated structural indices. In: Nielsen, L. A., Johnson, D. L. (Eds.). Fisheries techniques. American Fish Society, Bethesda, pp. 447–482.

Árva, D., Józsa, V., Györe, K., Kajári, B., Weiperth, A., Czeglédi, I., Specziár, A., Mozsár, A. (2024): A tízlábú rákok előfordulását befolyásoló biotikus és abiotikus tényezők [Biotic and abiotic factors influencing the occurence of decapodans]. In: Agrárminisztérium (szerk.): Tízlábú rákok (Decapoda) magyarországi elterjedésének felmérése. Szarvas, pp. 31–39.

Asmamaw, B., Beyene, B., Tessema, M., Assefa, A. (2019): Length-weight relationships and condition factor of Nile tilapia, Oreochromis niloticus (Linnaeus, 1758) (Cichlidae) in Koka Reservoir, Ethiopia. International Journal of Fisheries and Aquatic Research 4(1): 47–51.

Auguie, B. (2017): gridExtra: Miscellaneous Functions for "Grid" Graphics. R package version 2.3. https://CRAN.R-project.org/package=gridExtra

Báthori, F., Herczeg, G., Vilizzi, L., Jégh, T., Kakas, C., Petrovics, M., Csősz, S. (2024): A survey and risk screening of non-native ant species colonising greenhouses in Hungary. Biological Invasions 26(4): 1033–1044. https://doi.org/10.1007/s10530-023-03227-9

Blackburn, T. M., Pyšek, P., Bacher, S., Carlton, J. T., Duncan, R. P., Jarošík, V., Wilson, J. R. U., Richardson, D. M. (2011): A proposed unified framework for biological invasions. Trends in Ecology & Evolution 26(7): 333–339. https://doi.org/10.1016/j.tree.2011.03.023

Bódis, E., Borza, P., Potyó, I., Puky, M., Weiperth, A., Guti, G. (2012). Invasive mollusc, crustacean, fish and reptile species along the Hungarian section of the River Danube and some connected waters. Acta Zoologica Academiae Scientiarum Hungaricae 58: 29–45. https://doi.org/10.5281/zenodo.5736021

Bushaw, J. D., Ringelman, K. M., Johnson, M. K., Rohrer, T., Rohwer, F. C. (2020): Applications of an unmanned aerial vehicle and thermal‐imaging camera to study ducks nesting over water. Journal of Field Ornithology 91(4): 409–420. https://doi.org/10.1111/jofo.12346

Chanev, M., Dolapchiev, N., Kamenova, I., Filchev, L. (2023): Application of remote sensing methods for monitoring wild life populations: a review. In: Themistocleous, K., Michaelides, S., Hadjimitsis, D. G., Papadavid, G. (eds.): Ninth International Conference on Remote Sensing and Geoinformation of the Environment. https://doi.org/10.1117/12.2681760

Correia, A. M., Ferreira, O. (1995): Burrowing behaviour of the introduced red swamp crayfish Procambarus clarkii (Decapoda: Cambaridae) in Portugal. Journal of Crustacean Biology 15(2): 248–257. https://doi.org/10.1163/193724095x00262

de Carvalho-Souza, G. F., Medeiros, D. V., Silva, R. de A., González-Ortegón, E. (2023): Width/length–weight relationships and condition factor of seven decapod crustaceans in a Brazilian tropical estuary. Regional Studies in Marine Science 60: 102880. https://doi.org/10.1016/j.rsma.2023.102880

Encarnação, J., Baptista, V., Teodósio, M. A., Morais, P. (2021a): Low-cost citizen science effectively monitors the rapid expansion of a marine invasive species. Frontiers in Environmental Science 9: 752705. https://doi.org/10.3389/fenvs.2021.752705

Encarnação, J., Teodósio, M. A., Morais, P. (2021b): Citizen Science and Biological Invasions: A Review. Frontiers in Environmental Science 8: 602980. https://doi.org/10.3389/fenvs.2020.602980

Földvári, G., Szabó, É., Tóth, G. E., Lanszki, Z., Zana, B., Varga, Z., Kemenesi, G. (2022): Emergence of Hyalomma marginatum and Hyalomma rufipes adults revealed by citizen science tick monitoring in Hungary. Transboundary and Emerging Diseases 69: e2240-e2248. https://doi.org/10.1111/tbed.14563

Gál, B., Veronika, G., Csányi, B., Cser, B., Tibor, D., Farkas, A., Farkas, J., Gebauer, R., Répás, E., Szajbert, B., Kouba, A., Patoka, J., Pârvulescu, L., Weiperth, A. (2018): A vörös mocsárrák Procambarus clarkii (Girard, 1852) jelenlegi elterjedése és hatása a Duna egyes magyarországi befolyóinak halfaunájára [Present distribution of the invasive red swamp crayfish Procambarus clarkii (Girard, 1852) and its effects on the fish fauna assemblages in some tributaries of the Hungarian section of the River Danube]. Pisces Hungarici 12: 71–76.

Garamszegi, L. Z., Kurucz, K., Soltész, Z. (2023): Validating a surveillance program of invasive mosquitoes based on citizen science in Hungary. Journal of Applied Ecology 60(7): 1481–1494. https://doi.org/10.1111/1365-2664.14417

García-de-Lomas, J., Dana, E. D., González, R. (2020): Traps and netting, better together than alone: an innovative approach to improve Procambarus clarkii management. Knowledge and Management of Aquatic Ecosystems 421: 39. https://doi.org/10.1051/kmae/2020031

Gherardi, F. (2006): Crayfish invading Europe: The case study of Procambarus clarkii. Marine and Freshwater Behaviour and Physiology 39: 175–191. https://doi.org/10.1080/10236240600869702

Gherardi, F. (2007). Understanding the impact of invasive crayfish. In: Gherardi, F. (eds) Biological invaders in inland waters: Profiles, distribution, and threats. Invading Nature - Springer Series In Invasion Ecology 2: 507–542. https://doi.org/10.1007/978-1-4020-6029-8_28

Gherardi, F., Barbaresi, S. (2007): Feeding preferences of the invasive crayfish, Procambarus clarkii. Bulletin Français de la Pêche et de la Pisciculture 387: 7–20. https://doi.org/10.1051/kmae:2007014

Györe, K. (2024): Néhány Magyarországon előforduló édesvízi tízlábú rákfaj morfometrikus jellemzői [Morphometry of some decapodans occurring in Hungary]. In: Agrárminisztérium (szerk.): Tízlábú rákok (Decapoda) magyarországi elterjedésének felmérése. Szarvas, pp. 111–115.

Hobbs, H. H., Jass, J. P., Huner, J. V. (1989): A review of global crayfish introductions with particular emphasis on two North American species (Decapoda, Cambaridae). Crustaceana 56(3): 299–316. https://doi.org/10.1163/156854089X00275

Holdich, D. M., Reynolds, J. D., Souty-Grosset, C., Sibley, P. J. (2009): A review of the ever-increasing threat to European crayfish from non-indigenous crayfish species. Knowledge & Management of Aquatic Ecosystems 11: 394–395. https://doi.org/10.1051/kmae/2009025

Jisr, N., Younes, G., Sukhn, C., El-Dakdouki, M. H. (2018): Length-weight relationships and relative condition factor of fish inhabiting the marine area of the Eastern Mediterranean city, Tripoli-Lebanon. Egyptian Journal of Aquatic Research 44(4): 299–305. https://doi.org/10.1016/j.ejar.2018.11.004

Karachle, P. K., Stergiou, K. I. (2012). Morphometrics and Allometry in Fishes. In: Wahl, C. (ed.): Morphometrics. InTech. https://doi.org/10.5772/2138

Lindqvist, O. V., Lathi, E. (1983): On the sexual dimorphism and condition index in the crayfish, Astacus astacus L., in Finland. Freshwater Crayfish 5: 3–11. https://doi.org/10.5869/fc.1983.v5.003

Loureiro, T. G., Anastácio, P. M. S. G., Araujo, P. B., Souty-Grosset, C., Almerão, M. P. (2015): Red swamp crayfish: biology, ecology and invasion - an overview. Nauplius 23(1): 1–19. https://doi.org/10.1590/s0104-64972014002214

Loureiro, T. G., Anastácio, P. M., Bueno, S. L. de S., Araujo, P. B. (2018): Management of invasive populations of the freshwater crayfish Procambarus clarkii (Decapoda, Cambaridae): test of a population-control method and proposal of a standard monitoring approach. Environmental Monitoring and Assessment 190(9): 559. https://doi.org/10.1007/s10661-018-6942-6

Maceda-Veiga, A., Escribano-Alacid, J., Martínez-Silvestre, A., Verdaguer, I., Mac Nally, R. (2019): What’s next? The release of exotic pets continues virtually unabated 7 years after enforcement of new legislation for managing invasive species. Biological Invasions 21(9): 2933–2947. https://doi.org/10.1007/s10530-019-02023-8

Mack, R. N., Simberloff, D., Mark Lonsdale, W., Evans, H., Clout, M., Bazzaz, F. A. (2000): Biotic invasions: Causes, epidemiology, global consequences, and control. Ecological Applications 10(3): 689–710. https://doi.org/10.1890/1051-0761(2000)010[0689:bicegc]2.0.co;2

McClain, W. R. (1995): Growth of crawfish Procambarus clarkii as a function of density and food resources. Journal of the World Aquaculture Society 26(1): 24–28. https://doi.org/10.1111/j.1749-7345.1995.tb00205.x

Monticelli D., Defourny H., Degros E., Degros A. (2021): Body mass during the spring migration period of two long lived seabirds varies with capture date, age, sex, and natal origin. Journal of Ornithology 162: 1063–1074. https://doi.org/10.1007/s10336-021-01903-y

Monticelli D., Defourny H., Degros E., Portier B., Cerveira L. R., Ramos J. A., Paiva V. H., Berthelsen U. M., Bregnballe T.,·Van der Winden J., Bouwhuis S.,·Szczys P. (2024): Sex identification based on biometrics in four long distance migratory tern species mist netted along the East Atlantic Flyway. Journal of Ornithology 166: 577–588. https://doi.org/10.1007/s10336-024-02241-5

Odhano, S., Saher, N. U., Kamal, M. (2015): An over clawed (with two enlarge chela) male crab of Uca urvillei (Ocypodidae: Tubuca: Uca) along the coast of Karachi, Pakistan. Biharean Biologist 9(2): 170–172.

Oficialdegui, F. J., Sánchez, M. I., Clavero, M. (2020): One century away from home: how the red swamp crayfish took over the world. Reviews in Fish Biology and Fisheries 30(1): 121–135. https://doi.org/10.1007/s11160-020-09594-z

Oficialdegui, F. J., Sánchez, M. I., Lejeusne, C., Pacini, N., Clavero, M. (2019): Brought more than twice: the complex introduction history of the red swamp crayfish into Europe. Knowledge & Management of Aquatic Ecosystems 421: 2. https://doi.org/10.1051/kmae/2019044

Packard, G. C. (2017): Misconceptions about logarithmic transformation and the traditional allometric method. Zoology 123: 115–120. https://doi.org/10.1016/j.zool.2017.07.005

Polce, C., Cardoso, A. C., Deriu, I., Gervasini, E., Tsiamis, K., Vigiak, O., Zulian, G., Maes, J. (2023): Invasive alien species of policy concerns show widespread patterns of invasion and potential pressure across European ecosystems. Scientific Reports 13(1): 8124. https://doi.org/10.1038/s41598-023-32993-8

Potgieter, L. J., Cadotte, M. W., Roets, F., Richardson, D. M. (2024): Monitoring urban biological invasions using citizen science: the polyphagous shot hole borer (Euwallacea fornicatus). Journal of Pest Science 97: 2073–2085. https://doi.org/10.1007/s10340-024-01744-7

R Core Team (2025): R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

Ricciardi, A., Blackburn, T. M., Carlton, J. T., Dick, J. T. A., Hulme, P. E., Iacarella, J. C., Jeschke, J. M., Liebhold, A. M., Lockwood, J. L., MacIsaac, H. J., Pyšek, P., Richardson, D. M., Ruiz, G. M., Simberloff, D., Sutherland, W. J., Wardle, D. A., Aldridge, D. C. (2017): Invasion Science: A Horizon Scan of Emerging Challenges and Opportunities. Trends in Ecology & Evolution 32(6): 464–474. https://doi.org/10.1016/j.tree.2017.03.007

Roy, H. E., Pauchard, A., Stoett, P., Renard Truong, T. (2024): IPBES Invasive Alien Species Assessment: Full report (Version 4). Zenodo. https://doi.org/10.5281/ZENODO.7430682

Theobald, E. J., Ettinger, A. K., Burgess, H. K., DeBey, L. B., Schmidt, N. R., Froehlich, H. E., Wagner, C., HilleRisLambers, J., Tewksbury, J., Harsch, M. A., Parrish, J. K. (2015): Global change and local solutions: Tapping the unrealized potential of citizen science for biodiversity research. Biological Conservation 181: 236–244. https://doi.org/10.1016/j.biocon.2014.10.021

Turóci, Á., Fehér, Z., Krízsik, V., Páll-Gergely, B. (2020): Two new alien slugs, Krynickillus melanocephalus Kaleniczenko, 1851 and Tandonia kusceri (H. Wagner, 1931), are already widespread in Hungary. Acta Zoologica Academiae Scientiarum Hungaricae 66(3): 265–282. https://doi.org/10.17109/AZH.66.3.265.2020

Shealer, D. A., Cleary, C. M. (2007): Sex determination of adult black terns by DNA and morphometrics: Tests of sample size, temporal stability and geographic specificity in the classification accuracy of discriminant function models. Waterbirds 30(2): 180–188. https://doi.org/10.1675/1524-4695(2007)30[180:sdoabt]2.0.co;2

Simberloff, D., Martin, J.-L., Genovesi, P., Maris, V., Wardle, D. A., Aronson, J., Courchamp, F., Galil, B., García-Berthou, E., Pascal, M., Pyšek, P., Sousa, R., Tabacchi, E., Vilà, M. (2013): Impacts of biological invasions: what’s what and the way forward. Trends in Ecology & Evolution 28(1): 58–66. https://doi.org/10.1016/j.tree.2012.07.013

Soria Aguirre, J. M., Váczi, O., Biró, M., Juhász, E., Soltész, Z., Barta, B., Márton, Z., Szép, T., Halpern, B., Szentirmai, I., Károlyi, B., Czeglédi, A., Bela, G., Tormáné Kovács, E. (2024): Citizen Science for Nature Conservation in Hungary A Three-Dimensional Approach. Citizen Science: Theory and Practice 9(1): 39. https://doi.org/10.5334/cstp.762

Souty-Grosset, C., Anastácio, P. M., Aquiloni, L., Banha, F., Choquer, J., Chucholl, C., Tricarico, E. (2016): The red swamp crayfish Procambarus clarkii in Europe: Impacts on aquatic ecosystems and human well-being. Limnologica 58: 78–93. https://doi.org/10.1016/j.limno.2016.03.003

Weiperth, A., Csányi, B., Gál, B., György, Á. I., Szaloky, Z., Szekeres, J., Tóth, B. Puky, M. (2015): Egzotikus rák‐, hal‐ és kétéltűfajok a Budapest környéki víztestekben [Exotic crayfish, fish and amphibian species in various water bodies in the region of Budapest]. Pisces Hungarici 9: 65–70.

Weiperth, A., Gál, B., Kuříková, P., Langrová, I., Kouba, A., Patoka, J. (2019): Risk assessment of pet-traded decapod crustaceans in Hungary with evidence of Cherax quadricarinatus (von Martens, 1868) in the wild. North-Western Journal of Zoology 15: e171303.

Weiperth A., Kouba A., Csányi B., Danyi T., Farkas A., Gál B., Józsa V., Patoka, J., Juhász V., Parvulescu, L., Mozsár A., Seprős R., Staszny Á., Szajbert B., Ferincz Á. (2020a): Az idegenhonos tízlábú rákok (Decapoda) helyzete Magyarországon. Halászat 113(2): 61–69.

Weiperth, A., Bláha, M., Szajbert, B., Seprős, R., Bányai, Z., Patoka, J., Kouba, A. (2020b). Hungary: a European hotspot of non-native crayfish biodiversity. Knowledge & Management of Aquatic Ecosystems 421: 43. https://doi.org/10.1051/kmae/2020035

Wickham, H. (2016): ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York. https://doi.org/10.1007/978-3-319-24277-4_9

Wickham, H., François, R., Henry, L., Müller, K., Vaughan, D. (2023): dplyr: A Grammar of Data Manipulation. R package version 1.1.4. https://CRAN.R-project.org/package=dplyr

Wickham, H., Vaughan, D., Girlich, M. (2024): tidyr: Tidy Messy Data. R package version 1.3.1. https://CRAN.R-project.org/package=tidyr

Yezerinac S. M., Lougheed S. C., Handford P. (1992): Measurement error and morphometric studies: statistical power and observer experience. Systematic Biology 41(4): 471–482. https://doi.org/10.1093/sysbio/41.4.471

Zenni, R. D., Essl, F., García-Berthou, E., McDermott, S. M. (2021): The economic costs of biological invasions around the world. NeoBiota 67: 1–9. https://doi.org/10.3897/neobiota.67.69971

Zhang, S., Xiong, W., Wang, Z., Gan, L., Ding, X., He, H., Zhou, Y., Xiang, T., Ju, T., Shi, L., An, M., Dong, X. (2024): Total Length–Weight Relationships and Condition Factor of Invasive Procambarus clarkii (Girard, 1852) in Caohai Lake, China. Journal of Applied Ichthyology 2024: 2793707. https://doi.org/10.1155/jai/2793707

A 13/2001. (V. 9.) KÖM rendelet a védett és fokozottan védett növény- és állatfajokról, a fokozottan védett barlangok köréről, valamint az Európai Közösségben természetvédelmi szempontból jelentős növény- és állatfajok közzétételéről.

Megjelent
2025-11-28
Folyóirat szám
Rovat
Társadalomtudományi módszerek a természetvédelem szolgálatában