Mobilitási szolgáltatások komplex automatizálási szintjei

  • Csaba Csiszár Budapesti Műszaki és Gazdaságtudományi Egyetem, Közlekedésmérnöki és Járműmérnöki Kar, Közlekedésüzemi és Közlekedésgazdasági Tanszék
  • Dávid Földes Budapesti Műszaki és Gazdaságtudományi Egyetem, Közlekedésmérnöki és Járműmérnöki Kar, Közlekedésüzemi és Közlekedésgazdasági Tanszék
  • Tamás Tettamanti Budapesti Műszaki és Gazdaságtudományi Egyetem, Közlekedésmérnöki és Járműmérnöki Kar, Közlekedés- és Járműirányítási Tanszék
Kulcsszavak: járműirányítás, autonóm járművek, automatizáltsági szint

Absztrakt

A közlekedésben ismert és elfogadott automatizálási szintek elsősorban a járműirányításra fókuszálnak. Ugyanakkor a mobilitási szolgáltatások tervezése és használata is hatékonyabbá, illetve kényelmesebbé tehető az automatizálással. A mobilitási szolgáltatások automatizáltsági jellemzőit komplex módon leíró értékelő módszer a szolgáltatás tervezési, irányítási és utaskezelési funkciók jellemzésére alkalmazható.

Hivatkozások

Gerike, R., Koszowski, C. 2017. Sustainable Urban Transportation. Encyclopedia of Sustainable Technologies, Sustainable Built Environment & Sustainable Manufacturing (szerk. Abraham, M.A.), Elsevier, pp. 403-413. DOI: http://doi.org/c77g

Cass, N., Schwanen, T., Shove, E. 2018. Infrastructures, intersections and societal transformations. Technological Forecasting and Social Change, 137:160-167. DOI: http://doi.org/gft4bz

Büscher, M. Coulton, P., Efstratiou, C., Gellersen, H, Hemment, D., Mehmood, R., Sangiorgi, D. 2009. Intelligent

mobility systems: some socio-technical challenges and opportunities. International Conference on Communications Infrastructure. Systems and Applications in Europe, pp. 140-152. DOI: http://doi.org/d2k4v8

Szalay, Zs., Nyerges, Á., Hamar, Zs., Hesz, M. 2017. Technical Specification Methodology for an Automotive Proving Ground Dedicated to Connected and Automated Vehicles. Periodica Polytechnica Transportation Engineering, 45(3):68-174. DOI: http://doi.org/cxk3

Chen, T. D., Kockelman, K. M., Hanna, J. P. 2016. Operations of a shared, autonomous, electric vehicle fleet: Implications of vehicle & charging infrastructure decisions.Transportation Research Part A: Policy and Practice, 94:243-254. DOI: http://doi.org/gcsj5k

SAE International. 2018. Taxonomy and Definitions for Terms Related to On-Road Motor Vehicle Automated Driving Systems, Report No. J3016_201806 (2018). https://www.sae.org/standards/content/j3016_201806/

Gasser, T. M., Arzt, C., Ayoubi, M., Bartels, A., Bürkle, L., Eier, J., Flemisch, F., Hacker, D., Hesse, T., Huber, W., Lotz, C., Maurer, M., Ruth-Schumancher, S., Schwarz, J., Vogt, W. 2012. Legal consequences of an increase in vehicle automation, Consolidated final report of the project group, Part 1. (Report No. F 1100.5409013.01). Bergisch Gladbach: Bundesanstalt für Straßenwesen (Germany) http://bast.opus.hbz-nrw.de

UITP (Union International des Transport Public) International Association of Public Transport. 2011. Press Kit Metros automation facts, figures and trends. Report http://www.uitp.org/metro-automationfacts-figures-and-trends

IEC, International Electrotechnical Commission, 2014. IEC 62290-1:2014 standard. Railway applications - Urban guided transport management and command/control systems - Part 1: System principles and fundamental concepts, Report https://webstore.iec.ch/publication/6777

Milakis, D., Snelder, M., Van Arem, B., Van Wee, B., Correia, G. 2017. Development of automated vehicles in the Netherlands: scenarios for 2030 and 2050. European Journal of Transport and Infrastructure Research, 17(1):63-85.

Fagnant, D. J., Kockelman, K. M. 2015. Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations. Transportation Research Part A: Policy and Practice, 77:167-181. DOI: http://doi.org/gc4n5r

Schoettle, B., Sivak, M. 2015. A preliminary analysis of real-world crashes involving self-driving vehicles, Report No. UMTRI-2015-34 (Ann Arbor, MI: Transportation Research Institute, University of Michigan)

Waldrop, M. M. 2015. Autonomous vehicles: no drivers required. Nature 518(7537):20-23. DOI: http://doi.org/gfgq87

Pinter, K., Szalay, Z., & Vida, G. (2017). Liability in Autonomous Vehicle Accidents Liability in Autonomous. Communications - Scientific Letters of the University of Zilina, 19(4), 30-35.

Fagnant, D. J., Kockelman, K. M. 2014. The travel and environmental implications of shared autonomous vehicles, using agentbased model scenarios. Transportation Research Part C: Emerging Tecnologies, 40:1-13. DOI: http://doi.org/f5wzwd

Gruel, W., Stanford, J. M. 2016. Assessing the long-term effects of autonomous vehicles: a speculative approach. Transportation Research Procedia, 13:18-29. DOI: http://doi.org/gdgzxs

ITF International Transport Forum. 2015. Urban Mobility System Upgrade: How shared self-driving cars could change city traffic, Report. https://www.itf-oecd.org/urban-mobility-system-upgrade-1

Zhang, W., Guhathakurta, S., Fang, J., Zhang, G. 2015. Exploring the impact of shared autonomous vehicles on urban parking demand: an agent-based simulation approach. Sustainable Cities and Society, 19:34–45. DOI: http://doi.org/gdgzws

Nordhoff, S., van Arem, B., Merat, N., Madigan, R., Ruhrort, L., Knie, A., Happee, R. User Acceptance of Driverless Shuttles Running in an Open and Mixed Traffic Environment. 12th ITS European Congress, Strasbourg.

Krueger, R., Rashidi, T. H., Rose, J. M. 2016. Preferences for shared autonomous vehicles. Transportation Research Part C: Emerging Technologies, 69:343–355. DOI: http://doi.org/f84c8b

Christie, D., Koymans, A., Chanard, T., Lasgouttes, J. .M., Kaufmann, V. 2017. Pioneering driverless electric vehicles in Europe: the City Automated Transport System (CATS). Transportation Research Procedia, 13:30–39. DOI: http://doi.org/gdgzxx

Nordhoff, S., de Winter, J., Payre, W., van Arem, B., Hapee, R. 2018. What Impressions Do Users Have After a Ride in an Automated Shuttle? An Interview Study 2019. 63:252-269 DOI: http://doi.org/c77h

Pereira, A., M., Anany, H., Pribyl, O., Prikryl, J. 2017. Automated Vehicles in Smart Urban Environment: A Review.

SCSP2017, Smart City Symposium 2017, Prague. DOI: http://doi.org/cxk9

Davidson, P., Spinoulas, A. 2015. Autonomous Vehicles: What Could This Mean for the Future of Transport? Australian Institute of Traffic Planning and Management (AITPM) National Conference, Brisbane

Gonder, J., Earleywine, M., Sparks, W. 2012. Analyzing Vehicle Fuel Saving Opportunities through Intelligent Driver

Feedback. SAE Int. J. Passeng. Cars - Electron. Electr. Syst., 5(2):450-461. DOI: http://doi.org/c77j

Gerla, M., Lee, E-K., Pau, G., Lee, U. 2014. Internet of vehicles: From intelligent grid to autonomous cars and vehicular clouds. 2014 IEEE World Forum on Internet of Things (WF-IoT), Seoul. DOI: http://doi.org/c77k

Lotz, F. 2013. System Architectures for Automated Vehicle Guidance Concepts. Automotive systems engineering (szerk. Maurer, M., Winner, H.), Berlin Heidelberg, Germany, Springer

Zhang, R., Spieser, K., Frazzoli, E., Pavone, M. 2015. Models, algorithms, and evaluation for autonomous mobility-ondemand systems. 2015 American Control Conference (ACC), Chicago. DOI: http://doi.org/cxk8

Lyons, G. 2015. Viewpoint: Transport’s digital age transition. The Journal of Transport and Land Use (JTLU), 8(2):1-19. DOI: http://doi.org/c77m

Utriainen, R., Pöllänen, M. 2018. Review on mobility as a service in scientific publications. Research in Transportation Business & Management, 2018. 27(2):15-23. DOI: http://doi.org/gf3xwb

Földes, D., Csiszár, Cs. 2018. Framework for Planning the Mobility Service based on Autonomous Vehicles. Smart Cities Symposium Prague SCSP2018, Prague, Czech Republic. DOI: http://doi.org/c77p

ITF, International Transport Forum. 2017. Shared Mobility Simulations for Helsinki. Paris, France, Report

Li, Y., Voege, T. 2017. Mobility as a Service (MaaS): Challenges of Implementation and Policy Required. Journal of Transportation Technologies, 7(2):95-106. DOI: http://doi.org/c77q

Ampountolas, K., Kring, M. 2015. Mitigating bunching with bus-following models and bus-to-bus cooperation. ITSC 2015. IEEE 18th International Conference on Intelligent Transportation Systems, Las Palmas. DOI: http://doi.org/c77r

Beiker, S. 2016. Implementation of an Automated Mobility-on-Demand System. Autonomous Driving (szerk. Maurer, M., Gerdes, J., Lenz, B., Winner, H.), Berlin, Heidelber: Springer, pp. 277-295.

Grossardt, T., Bailey, K. 2018. Public Participation in Transportation Planning and Design: Theory, Process, and Practice. Transportation Planning and Public Participation, Amsterdam, Elsevier, pp. 1-26. DOI: http://doi.org/c77s

Mulley, C., Clifton, G. T., Balbontin, C., Ma, L. 2017. Information for travelling: Awareness and usage of the various sources of information available to public transport users in NSW. Transportation Research Part A: Policy and Practice, 101:111-132. DOI: http://doi.org/gbm4g3

Olivková, I. 2017. Comparison and Evaluation of Fare Collection Technologies in the Public Transport. Procedia

Engineering, 178:515-525. DOI: http://doi.org/c77t

Varga, I., Tettamanti, T., Kulcsár, B. 2018. Optimally combined headway and timetable reliable public transport system. Transportation Research Part C: Emerging technologies, 92:1-26. DOI: http://doi.org/gdxfv8

Skabardonis, A. 2000. Control strategies for transit priority. Transportation Research Record, 1727:20-26. DOI: http://doi.org/ckfwk2

Polgár, J., Tettamanti, T., Varga, I. 2013. Passenger number dependent traffic control in signalized intersections. Periodica Polytechnica Civil Engineering, 57(2):201–210. DOI: http://doi.org/c77v

Tettamanti, T., Mohammadi, A., Asadi, H., Varga, I. 2017. A two-level urban traffic control for autonomous vehicles to improve network-wide performance. Transportation Research Procedia, 27:913-920. DOI: http://doi.org/c77w

Hogyan kell idézni
CsiszárC., FöldesD., & TettamantiT. (1). Mobilitási szolgáltatások komplex automatizálási szintjei. Közlekedéstudományi Szemle, 69(4), 33-48. https://doi.org/10.24228/KTSZ.2019.4.3
Folyóirat szám
Rovat
Cikkek