A Sharpe-hányados-függvény és becslése neves portfóliókon

  • Vörös József écsi Tudományegyetem Közgazdaságtudományi Kar
  • Kehl Dániel Pécsi Tudományegyetem Közgazdaságtudományi Kar
  • Rappai Gábor Pécsi Tudományegyetem Közgazdaságtudományi Kar
Kulcsszavak: Sharpe-hányados, hatékony portfólió, kockázat–hozam felület, portfólió-­optimalizálás, DAX 40, BUX 5

Absztrakt

E tanulmány a Sharpe-hányadost dinamikusan kezeli, vagyis nemcsak azt tekinti, hogy egy adott portfólióval kapcsolatban mennyi a – szórással mért – egységnyi kockázatra jutó prémiumhozam (azaz a portfólió várható hozamának és a kockázatmentes kamatlábnak a különbsége), hanem a kamatláb függvényeként állítja elő a Sharpe-hányadost. Ehhez ismerni kell az átlaghozam és a kockázat portfólióra jellemző kapcsolatának analitikus formáját. Megállapítottuk, hogy a Sharpe-hányados-függvény szigorúan csökkenő konvex a kamatláb azon szakaszain, amelyekhez tartozó átlaghozam-kockázat felületen nincsenek töréspontok (azaz differenciálható) a kockázatos papírokra vonatkozóan. Amikor viszont a kamatlábtartományhoz egy töréspont tartozik (vagyis a hatékony felület nem differenciálható), a Sharpe-hányados-függvény ezen tartományban lineáris (és csökkenő). Mivel a piaci portfóliók negatív befektetéseket nem tartalmazhatnak, a hatékony felület soha nem differenciálható. Empirikus adatok alapján vizsgáltuk az index viselkedését a DAX 40 és a BUX 5 kosarakra, majd a 2015 és 2024 közötti évek különböző időszakaira előállítottuk a hatékony felületek analitikáját és ennek nyomán a Sharpe-hányados-függvényeket. Fontos megállapításaink közé tartozik, hogy a DAX Sharpe-hányadosa a 2022. február és 2024. december közötti (háborús) adatokra lényegesen magasabb, mint a 2015–2024-es időszakra, ugyanakkor a BUX Sharpe-indexe csak fele a DAX-énak. Az utóbbi időszakban viszont a BUX 5 átlaghozama a jelenlegi kapitalizációs adatok alapján közel kétszerese a DAX 40-ének.

Hivatkozások

Bodnar, T., & Gupta, A. K. (2015). Robustness of the inference procedures for the global minimum variance portfolio weights in a skew-normal model. The European Journal of Finance, 21(13–14), 1176–1194. https://doi.org/10.1080/1351847X.2012.696073

Bodnar, T., Mazur, S., & Okhrin, Y. (2017). Bayesian estimation of the global minimum var-iance portfolio. European Journal of Operational Research, 256(1), 292–307. https://doi.org/10.1016/j.ejor.2016.05.044

Brennan, T. J., & Lo, A. W. (2010). Impossible frontiers. Management Science, 56(6), 905–923. https://doi.org/10.1287/mnsc.1100.1157

Buser, S. A. (1977). A simplified expression for the efficient frontier in mean variance portfolio analysis. Management Science, 23(8), 901–904. https://doi.org/10.1287/mnsc.23.8.901

Cesarone, F., Martino, M. L., & Tardella, F. (2023). Mean variance VaR portfolios: MIQP formulation and performance analysis. OR Spectrum, 45, 1043–1069. https://doi.org/10.1007/s00291-023-00719-x

Duffie, D., & Pan, J. (1997). An overview of value at risk. Journal of Derivatives, 4(3), 7–49. https://doi.org/10.3905/jod.1997.407971

Dybvig, P. H. (1984). Short sales restrictions and kinks on the mean variance frontier. The Journal of Finance, 39(1), 239–244. http://dx.doi.org/10.1111/j.1540-6261.1984.tb03871.x

Fama, E. F., & French, K. R. (1996). Multifactor explanations of asset pricing anomalies. The Journal of Finance, 51(1), 55–84. https://doi.org/10.1111/j.1540-6261.1996.tb05202.x

Fama, E. F., & French, K. R. (2004). The capital asset pricing model: Theory and evidence. Journal of Economic Perspectives, 18(3), 25–46. https://doi.org/10.1257/0895330042162430

Fama, E. F., & MacBeth, J. D. (1973). Risk, return, and equilibrium: Empirical tests. Journal of Political Economy, 81(3), 607–636. https://doi.org/10.1086/260061

Guijarro, F. (2018). A similarity measure for the cardinality constrained frontier in the mean variance optimization model. Journal of the Operational Research Society, 69(6), 928–945. https://doi.org/10.1057/s41274-017-0276-6

Guijarro, F., & Tsinaslanidis, P. E. (2021). A surrogate similarity measure for the mean

variance frontier optimisation problem under bound and cardinality constraints. Jour-nal of the Operational Research Society, 72(3), 564–579. https://doi.org/10.1080/01605682.

1657367

Kerstens, K., Mounir, A., & Van de Woestyne, I. (2012). Benchmarking mean variance portfolios using a shortage function: The choice of direction vector affects rankings. Journal of the Operational Research Society, 63(9), 1199–1212. https://doi.org/10.1057/jors.2011.140

Lintner, J. (1965). Security prices, risk, and maximal gains from diversification. The Journal of Finance, 20(4), 587–615. https://doi.org/10.2307/2977249

Markowitz, H. (1956). The optimization of a quadratic function subject to linear constraints. Naval Research Logistics Quarterly, 3(1-2), 111–133. https://doi.org/10.1002/nav.3800030110

Markowitz, H. (1959). Portfolio selection: Efficient diversification of investment. John Wiley & Sons.

Markowitz, H. (2005). Market efficiency: A theoretical distinction and so what? Financial Analysts Journal, 61(5), 17–30. https://doi.org/10.2469/faj.v61.n5.2752

Markowitz, H. M., & Todd, G. P. (2000). Mean variance analysis in portfolio choice and capital markets. F. J. Fabozzi Associates.

Merton, R. C. (1972). An analytic derivation of the efficient portfolio frontier. Journal of Financial and Quantitative Analysis, 7(4), 1851–1872. https://doi.org/10.2307/2329621

Mossin, J. (1966). Equilibrium in a capital asset market. Econometrica, 34(4), 768–783. https://doi.org/10.2307/1910098

Qi, Y., Hirschberger, M., & Steuer, R. E. (2009). Dotted representation of mean variance efficient frontiers and their computation. INFOR, 47(1), 15–21. https://doi.org/10.3138/infor.47.1.15

Qi, Y., & Steuer, R. E. (2020). On the analytical derivation of efficient sets in quad and higher criterion portfolio selection. Annals of Operations Research, 293(2), 521–538. https://doi.org/10.1007/s10479-018-3101-y

Qi, Y., & Steuer, R. E. (2025). An analytic derivation of properly efficient sets in multi

objective portfolio selection. Annals of Operations Research, 346(2), 1573–1595. DOI: https://doi.org/10.1007/s10479-024-05848-2

Qi, Y., Steuer, R. E., & Wimmer, M. (2017). An analytical derivation of the efficient surface in portfolio selection with three criteria. Annals of Operations Research, 251(1-2), 161–177. https://doi.org/10.1007/s10479-015-1900-y

Qi, Y., Zhang, Y., & Zhang, S. (2024). Theoretically scrutinizing kinks on efficient frontiers and computationally reporting nonexistence of the tangent portfolio for the capital asset pricing model by parametric quadratic programming. Asia Pacific Journal of Operational Research, 41(2), 2350012. https://doi.org/10.1142/S0217595923500124

Rockafellar, R. T., & Uryasev, S. (2000). Optimization of conditional value at risk. Journal of Risk, 2(3), 21–42. https://doi.org/10.21314/JOR.2000.038

Rockafellar, R. T., & Uryasev, S. (2002). Conditional value at risk for general loss distribu-tions. Journal of Banking and Finance, 26(7), 1443–1471. https://doi.org/10.1016/S0378-4266(02)00271-6

Ross, S. A. (1976). The arbitrage theory of capital asset pricing. Journal of Economic Theory, 13(3), 341–360. https://doi.org/10.1016/0022-0531(76)90046-6

Sharpe, W. F. (1963). A simplified model for portfolio analysis. Management Science, 9(2), 277–293. https://doi.org/10.1287/mnsc.9.2.277

Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. The Journal of Finance, 19(3), 425–442. https://doi.org/10.1111/j.1540-6261.1964.tb02865.x

Sharpe, W. F. (1970). Portfolio theory and capital markets. McGraw Hill.

Steuer, R. E. (1986). Multiple criteria optimization: Theory, computation, and application. John Wiley & Sons.

Steuer, R. E., Qi, Y., & Wimmer, M. (2024). Computing cardinality constrained portfolio selection efficient frontiers via closest correlation matrices. European Journal of Opera-tional Research, 313(2), 628–636. https://doi.org/10.1016/j.ejor.2023.08.026

Vörös, J. (1986). Portfolio analysis: An analytic derivation of the efficient portfolio frontier. European Journal of Operational Research, 23(3), 294–300. https://doi.org/10.1016/0377 2217(86)90123 1

Vörös, J., & Rappai, G. (2026). On the differentiability of the portfolio efficient frontier. Manuscript submitted for publication.

Vörös, J., Kriens, J., & Strijbosch, L. W. G. (1999). A note on the kinks at the mean variance frontier. European Journal of Operational Research, 112(1), 236–239. https://doi.org/10.1016/S0377-2217(97)00389-5

Zhang, W. G., & Nie, Z. K. (2004). On admissible efficient portfolio selection policy. Applied Mathematics and Computation, 159(2), 357–371. https://doi.org/10.1016/j.amc.2003.10.019

Zhang, W. G., & Wang, Y. L. (2008). An analytic derivation of admissible efficient frontier with borrowing. European Journal of Operational Research, 184(1), 229–243. https://doi.org/10.1016/j.ejor.2006.09.058

Megjelent
2026-02-16
Hogyan kell idézni
VörösJ., KehlD., & RappaiG. (2026). A Sharpe-hányados-függvény és becslése neves portfóliókon. Közgazdasági Szemle, 73(2), 148-173. https://doi.org/10.18414/KSZ.2026.2.148
Folyóirat szám
Rovat
Tanulmány