Revisiting the optimal repayment path for mortgages
Abstract
In this short paper I revisit a problem we studied with Júlia Király: in case of inflation, how could the repayment path of a mortgage be improved for the borrower? The answer is clear: it is the real, not the nominal value of the repayment that should be constant. Assuming constant inflation, income growth and interest rate, we analyze the problem in the simplest possible model. It appears that indexation is promising, especially for faster inflation, growth and rensonable foresight.
References
Banai, Á., Berlinger, E., & Dömötör, B. (2022). Adjustable-rate mortgages in the era of global reflation: How to model additional default risk? PLOS One. https://doi.org/10.1371/journal.pone.0263599
Berlinger, E. (2009). An efficient student loan system: Case study of Hungary. Higher Edu-cation in Europe, 34(2), 257–267. https://doi.org/10.1080/03797720902867542
Berlinger, E. (2019). The risks of variable interest rates: A case study of mortgage lending in Hungary from 2004–2018. In B. Bodzási (Ed.), Foreign currency lending in Hungary: A legal and economic analysis of foreign currency lending (pp. 35–54). Corvinus University of Budapest.
Berlinger, E., & Walter, Gy. (2013). Egy unortodox javaslat a deviza- és forintalapú jelzá-loghitelek rendezésére. Hitelintézeti Szemle, 12, 469–494.
Bodzási, B. (Ed.) (2019). Foreign currency lending in Hungary: A legal and economic analysis of foreign currency lending. Corvinus University of Budapest.
Boutros, M., Clara, N., & Kartashova, K. (2025). The value of mortgage choice: Payment structure and contract length. Mimeo. https://www.michaelboutros.com/papers/Mortgage
ChoiceModel.pdf
Buckley, R., Lipman, B., & Persaud, T. (1993). Mortgage design under inflation and real wage uncertainty: The use of a dual index instrument. World Development, 21(3), 455–464. https://doi.org/10.1016/0305-750x(93)90157-5
Campbell, J. Y., & Cocco, J. F. (2003). Household risk management and optimal mortgage choice. Quarterly Journal of Economics, 118(4), 1449–1494. https://doi.org/10.1162/
Campbell, J. Y., & Cocco, J. F. (2015). A model of mortgage default. Journal of Finance, 70(4), 1495–1554. https://doi.org/10.1111/jofi.12252
Incze, Zs. (2025). Alternatíva a jövőbeli hitelezésben: Jövedelmi pályákhoz igazodó törlesztőrészletek. Hitelintézeti Szemle, 24(3), 98–124. https://doi.org/10.25201/HSZ.24.3.98
Király, J., & Simonovits, A. (2015). Jelzáloghitel törlesztés forintban és devizában – egy-szerű modellek. Közgazdasági Szemle, 62(1), 1–26. https://www.kszemle.hu/tartalom/cikk.php?id=1531
Kovács, L., & Nagy, E. (2020). Életciklus és törlesztőrészlet: A reálértékben állandó törlesztőrészlet és életciklus-jövedelem alkalmazhatósága a lakáshitelezésben. Köz-gazdasági Szemle, 67(10), 1029–1056. https://doi.org/10.18414/KSZ.2020.10.1029
Kovács, L., & Pásztor, Sz. (2018). A globális jelzálogpiac helyzete és kihívásai. Közgazdasági Szemle, 65(12), 1225–1256. https://doi.org/10.18414/ksz.2018.12.1225
Lessard, D., & Modigliani, F. (Eds.) (1975). New mortgage designs for stable housing in an inflationary environment. Federal Reserve Bank of Boston Conference, January 1975.
Modigliani, F. (1974). Some economic implications of the indexing of financial assets with special reference to mortgages. In M. Monti (Ed.), The “New Inflation” and Monetary Policy. Palgrave Macmillan.
Simonovits, A. (1991). Az 1991. évi lakáshitel törlesztés matematikája. Közgazdasági Szemle, 38(7-8), 755–763.





