Revisiting the optimal repayment path for mortgages

  • András Simonovits Budapesti Műszaki és Gazdaságtudományi Egyetem Matematikai Intézet
Keywords: mortgage loan, repayment path, indexation, real-value repayment, inflation

Abstract

In this short paper I revisit a problem we studied with Júlia Király: in case of inflation, how could the repayment path of a mortgage be improved for the borrower? The answer is clear: it is the real, not the nominal value of the repayment that should be constant. Assuming constant inflation, income growth and interest rate, we analyze the problem in the simplest possible model. It appears that indexation is promising, especially for faster inflation, growth and rensonable foresight.

References

Banai, Á., Berlinger, E., & Dömötör, B. (2022). Adjustable-rate mortgages in the era of global reflation: How to model additional default risk? PLOS One. https://doi.org/10.1371/journal.pone.0263599

Berlinger, E. (2009). An efficient student loan system: Case study of Hungary. Higher Edu-cation in Europe, 34(2), 257–267. https://doi.org/10.1080/03797720902867542

Berlinger, E. (2019). The risks of variable interest rates: A case study of mortgage lending in Hungary from 2004–2018. In B. Bodzási (Ed.), Foreign currency lending in Hungary: A legal and economic analysis of foreign currency lending (pp. 35–54). Corvinus University of Budapest.

Berlinger, E., & Walter, Gy. (2013). Egy unortodox javaslat a deviza- és forintalapú jelzá-loghitelek rendezésére. Hitelintézeti Szemle, 12, 469–494.

Bodzási, B. (Ed.) (2019). Foreign currency lending in Hungary: A legal and economic analysis of foreign currency lending. Corvinus University of Budapest.

Boutros, M., Clara, N., & Kartashova, K. (2025). The value of mortgage choice: Payment structure and contract length. Mimeo. https://www.michaelboutros.com/papers/Mortgage

ChoiceModel.pdf

Buckley, R., Lipman, B., & Persaud, T. (1993). Mortgage design under inflation and real wage uncertainty: The use of a dual index instrument. World Development, 21(3), 455–464. https://doi.org/10.1016/0305-750x(93)90157-5

Campbell, J. Y., & Cocco, J. F. (2003). Household risk management and optimal mortgage choice. Quarterly Journal of Economics, 118(4), 1449–1494. https://doi.org/10.1162/

Campbell, J. Y., & Cocco, J. F. (2015). A model of mortgage default. Journal of Finance, 70(4), 1495–1554. https://doi.org/10.1111/jofi.12252

Incze, Zs. (2025). Alternatíva a jövőbeli hitelezésben: Jövedelmi pályákhoz igazodó tör­lesz­tő­részletek. Hitelintézeti Szemle, 24(3), 98–124. https://doi.org/10.25201/HSZ.24.3.98

Király, J., & Simonovits, A. (2015). Jelzáloghitel törlesztés forintban és devizában – egy-szerű modellek. Közgazdasági Szemle, 62(1), 1–26. https://www.kszemle.hu/tartalom/cikk.php?id=1531

Kovács, L., & Nagy, E. (2020). Életciklus és törlesztőrészlet: A reálértékben állandó tör­lesz­tő­részlet és életciklus-jövedelem alkalmazhatósága a lakáshitelezésben. Köz-gazdasági Szemle, 67(10), 1029–1056. https://doi.org/10.18414/KSZ.2020.10.1029

Kovács, L., & Pásztor, Sz. (2018). A globális jelzálogpiac helyzete és kihívásai. Közgazdasági Szemle, 65(12), 1225–1256. https://doi.org/10.18414/ksz.2018.12.1225

Lessard, D., & Modigliani, F. (Eds.) (1975). New mortgage designs for stable housing in an inflationary environment. Federal Reserve Bank of Boston Conference, January 1975.

Modigliani, F. (1974). Some economic implications of the indexing of financial assets with special reference to mortgages. In M. Monti (Ed.), The “New Inflation” and Monetary Policy. Palgrave Macmillan.

Simonovits, A. (1991). Az 1991. évi lakáshitel törlesztés matematikája. Közgazdasági Szemle, 38(7-8), 755–763.

Published
2026-02-16
How to Cite
SimonovitsA. (2026). Revisiting the optimal repayment path for mortgages. Hungarian Economic Review, 73(2), 174-189. https://doi.org/10.18414/KSZ.2026.2.174
Section
Műhely