Algorithmic Bias as a Legal Polemic

Abstract

The paper explores algorithmic bias as a legal dilemma, presenting the conceptual basis of the phenomenon, its effects and regulatory challenges. The fragmented regulatory environment in the US and the EU’s strict, user-centric framework, such as the GDPR, DSA and AI regulations, are presented. As a result of this paper, we highlight the key role of transparency and accountability mechanisms in mitigating bias and emphasise the urgent need for coordinated global regulatory efforts. The study also points out that existing enforcement mechanisms are often insufficient for effective implementation. In particular, the problem of ‘black box’ algorithm design persists, which hinders the identification and remediation of biases, and regulatory frameworks show significant inequalities between different groups. In this paper, we conclude that without a globally harmonized regulatory framework, existing efforts cannot effectively address the challenges of AI, in particular bias. In the paper, we urge global cooperation, which we believe is essential to respond appropriately to technological developments.

References

Amazon scrapped 'sexist AI' tool. BBC, 2018. október 10. https://www.bbc.com/news/technology-45809919

Angwin, Julian – Larson, Jeff – Mattu, Surya – Kirchner, Lauren: Machine Bias. ProPublica, 2016. május 23. https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

Barbosa, Sandra – Félix, Sara: Algorithms and the GDPR: An analysis of article 22. Anuário da Proteção de Dados, 2021.

Binns, Reuben– Van Kleek, Max – Veale, Michael – Lyngs, Ulrik – Zhao, Jun – Shadbolt, Nigel: ’It’s Reducing a Human Being to a Percentage’: Perceptions of Justice in Algorithmic Decisions. arXiv (Cornell University), April 21, 2018. http://arxiv.org/abs/1801.10408

Blueprint for an AI Bill of Rights. WH.Gov, 2022–2023. (A kézirat leadásakor elektronikusan elérhető volt, de a Trump-adminisztráció azóta törölte.)

Bouchagiar, Georgios: Is Europe prepared for Risk Assessment Technologies in criminal justice? Lessons from the US experience. New Journal of European Criminal Law, Vol. 15., No. 1. (2024) https://doi.org/10.1177/20322844241228676

Brennan, Tim – Dieterich, William – Ehret, Beate: Evaluating the Predictive Validity of the Compas Risk and Needs Assessment System. Criminal Justice and Behavior, Vol. 36., No. 1. (2008) https://doi.org/10.1177/0093854808326545

Brożek, Bartosz – Furman, Michał – Jakubiec, Marek – Kucharzyk, Bartłomiej: The black box problem revisited. Real and imaginary challenges for automated legal decision making. Artificial Intelligence and Law, Vol. 32., No. 2. (2023) 427–428. https://doi.org/10.1007/s10506-023-09356-9

Bygrave, Lee A.: Article 22. In: Christopher Kuner –Lee A Bygrave – Christopher Docksey – Laura Drechsler (szerk.): The EU General Data Protection Regulation (GDPR): A Commentary. Oxford, Oxford University Press, 2020.

Chen, Zhisheng: Ethics and discrimination in artificial intelligence-enabled recruitment practices. Humanities and Social Sciences Communications, Vol. 10., No. 1. (2023) https://doi.org/10.1057/s41599-023-02079-x

Da Silveira, Julia Barroso – Lima, Ellen Alves: Racial Biases in AIs and Gemini’s Inability to Write Narratives About Black People. Emerging Media, Vol. 2., No. 2. (2024) https://doi.org/10.1177/27523543241277564

Dodge, Jonathan – Liao, Q. Vera – Zhang, Yunfeng – Bellamy, Rachel K. E. – Dugan, Casey: Explaining models: an empirical study of how explanations impact fairness judgment. Proceedings of the 24th International Conference on Intelligent User Interfaces. Marina Del Ray, CA, USA., March 17, 2019. (2019) https://doi.org/10.1145/3301275.3302310

Engel, Christoph – Linhardt, Lorenz – Schubert, Marcel: Code is law: how COMPAS affects the way the judiciary handles the risk of recidivism. Artificial Intelligence and Law, Vol. 33. (2024) https://doi.org/10.1007/s10506-024-09389-8

Fact Sheet: President Biden Issues Executive Order on Safe, Secure, and Trustworthy Artificial Intelligence. WH.Gov, 2023. október 30. (A kézirat leadásakor elektronikusan elérhető volt, de a Trump-adminisztráció azóta törölte.)

Field, Matthew: From Black Nazis to female Popes and American Indian Vikings: How AI went ‘woke’. The Telegraph, 2024. február 23. https://tinyurl.com/2uke3bt9

Flores, Anthony W. – Bechtel, Kristin – Lowenkamp, Christopher T.: False Positives, False Negatives, and False Analyses: A Rejoinder to ‘Machine Bias: There’s Software Used across the Country to Predict Future Criminals and It’s Biased against Blacks.’ Federal Probation, Vol. 80., No. 2. (2016)

Fogliato, Riccardo – Chouldechova, Alexandra – G’Sell, Max: Fairness Evaluation in Presence of Biased Noisy Labels. International Conference on Artificial Intelligence and Statistics, 2020. június 3. (2020)

Gosztonyi, Gergely – Lendvai, Gergely: Deepfake és dezinformáció. Mit tehet a jog a mélyhamisítással készített álhírek ellen? Médiakutató, Vol. 25., No. 1. (2024) https://doi.org/10.55395/mk.2024.1.3

Governing AI for Humanity. UN Final Report, 2024. szeptember. 7–8.

Hacker, Philipp: Teaching fairness to artificial intelligence: Existing and novel strategies against algorithmic discrimination under EU law. Common Market Law Review, Vol. 55., No. 4. (2018) https://doi.org/10.54648/cola2018095

Hofeditz, Lennart – Mirbabaie, Milad – Luther, Audrey – Mauth, Riccarda – Rentemeister, Ina: Ethics Guidelines for Using AI-based Algorithms in Recruiting: Learnings from a Systematic Literature Review. Proceedings of the ... Annual Hawaii International Conference on System Sciences/Proceedings of the Annual Hawaii International Conference on System Sciences, 2022. január 1. (2022) https://doi.org/10.24251/hicss.2022.018

Hsu, Jeremy: Can AI hiring systems be made antiracist? Makers and users of AI-assisted recruiting software reexamine the tools’ development and how they’re used. IEEE Spectrum, Vol. 57., No. 9. (2020) 9. https://doi.org/10.1109/mspec.2020.9173891

Husovec, Martin: The DSA’s Scope Briefly Explained. SSRN, July 4, 2023. https://doi.org/10.2139/ssrn.4365029

Imran, Muhammad – Almusharraf, Norah: Google Gemini as a next generation AI educational tool: a review of emerging educational technology. Smart Learning Environments, Vol. 11., No. 1. (2024) https://doi.org/10.1186/s40561-024-00310-z

Initial Rescissions of Harmful Executive Orders and Actions. White House, 2025. január 20. https://tinyurl.com/4wuhbe8h

Johnson, Gabbrielle M.: Algorithmic bias: on the implicit biases of social technology. Synthese, Vol. 198., No. 10. (2020) https://doi.org/10.1007/s11229-020-02696-y

Kim, Jin-Young – Cho, Sung-Bae: An information theoretic approach to reducing algorithmic bias for machine learning. Neurocomputing, Vol. 500. (2022) https://doi.org/10.1016/j.neucom.2021.09.081

Kordzadeh, Nima – Ghasemaghaei, Maryam: Algorithmic bias: review, synthesis, and future research directions. European Journal of Information Systems, Vol. 31., No. 3. (2021) https://doi.org/10.1080/0960085x.2021.1927212

Lagioia, Francesca – Rovatti, Riccardo – Sartor, Giovanni: Algorithmic fairness through group parities? The case of COMPAS-SAPMOC. AI & Society, Vol. 38., No. 2. (2022) https://doi.org/10.1007/s00146-022-01441-y

Larson, Jeff – Mattu, Surya – Kirchner, Lauren – Angwin, Julia: How We Analyzed the COMPAS Recidivism Algorithm. ProPublica, 2016. május 23. https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm

Lendvai, Gergely Ferenc: Sharenting as a regulatory paradox – a comprehensive overview of the conceptualization and regulation of sharenting. International Journal of Law Policy and the Family, Vol. 38., No. 1. (2024) https://doi.org/10.1093/lawfam/ebae013

Lendvai, Gergely Ferenc: Taming the Titans? – Digital Constitutionalism and the Digital Services Act. ESSACHESS, Vol. 17., No. 34. (2024) http://dx.doi.org/10.21409/0M3P-A614

Liesenfeld, Anna: The Legal Significance of Independent Research based on Article 40 DSA for the Management of Systemic Risks in the Digital Services Act. European Journal of Risk Regulation, (2024) https://doi.org/10.1017/err.2024.61

MacCarthy, Mark: Standards of Fairness for Disparate Impact Assessment of Big Data Algorithms. Cumberland Law Review, Vol. 48., No. 1. (2017) https://doi.org/10.2139/ssrn.3154788

McDonald, Clare: AI and cyber skills worryingly lacking, say business leaders. ComputerWeekly, 2024. július 11. https://tinyurl.com/27kn7p96

Novelli, Claudio – Casolari, Federico – Rotolo, Antonino – Taddeo, Mariarosaria – Floridi, Luciano: Taking AI risks seriously: a new assessment model for the AI Act. AI & Society, Vol. 39., No. 5. (2023) https://doi.org/10.1007/s00146-023-01723-z

Novelli, Claudio – Gaur, Akriti – Floridi, Luciano: Two Futures of AI Regulation under the Trump Administration. (Preprint.) SSRN, 2025. március 30. http://dx.doi.org/10.2139/ssrn.5198926

O’Neil, Cathy: Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. London, Penguin, 2016. 19.

Pänke, Julian: The Fallout of the EU’s Normative Imperialism in the Eastern Neighborhood. Problems of Post-Communism, Vol. 62., No. 6. (2015). https://doi.org/10.1080/10758216.2015.1093773

Ratwani, Raj M. – Sutton, Karey – Galarraga, Jessica E.: Addressing AI Algorithmic Bias in Health Care. JAMA, Vol. 332., No. 13. (2024). https://doi.org/10.1001/jama.2024.13486

Removing Barriers to American Leadership in Artificial Intelligence. White House, 2025. január 23. https://tinyurl.com/2u6zf73x

Robert, Lionel P. – Pierce, Casey – Marquis, Liz – Kim, Sangmi – Alahmad, Rasha: Designing fair AI for managing employees in organizations: a review, critique, and design agenda. Human-Computer Interaction, Vol. 35., No. 5–6. (2020) https://doi.org/10.1080/07370024.2020.1735391

Robertson, Ali: Google apologizes for ‘missing the mark’ after Gemini generated racially diverse Nazis. The Verge, 2024. február 21. https://tinyurl.com/mfsvs2xc

Rudin, Cynthia – Wang, Caroline – Coker, Beau: The Age of Secrecy and Unfairness in Recidivism Prediction. Harvard Data Science Review, Vol. 2., No. 1. (2020) https://doi.org/10.1162/99608f92.6ed64b30

Saed, Ferial: The Uncertain Future of AI Regulation in a Second Trump Term. Stimson, 2025. március 13. https://tinyurl.com/bnuzdttt

Saeidnia, Hamid Reza: Welcome to the Gemini era: Google DeepMind and the information industry. Library Hi Tech News, December 26, 2023. https://doi.org/10.1108/lhtn-12-2023-0214

Shin, Donghee – Shin, Emily Y.: Data’s Impact on Algorithmic Bias. Computer, Vol. 56., No. 6. (2023) 90. https://doi.org/10.1109/mc.2023.3262909

Singh, Jay P.: Predictive Validity Performance Indicators in Violence Risk Assessment: A Methodological Primer. Behavioral Sciences & the Law, Vol. 31., No. 1. (2013) https://doi.org/10.1002/bsl.2052

Supervision of the designated very large online platforms and search engines under DSA. European Commission, 2024. december 17. https://tinyurl.com/376xzn37

Van Bekkum, Marvin: Using sensitive data to de-bias AI systems: Article 10(5) of the EU AI act. Computer Law & Security Review, Vol. 56. (2025) https://doi.org/10.1016/j.clsr.2025.106115

Veale, Michael – Van Kleek, Max – Binns, Reuben: Fairness and Accountability Design Needs for Algorithmic Support in High-Stakes Public Sector Decision-Making. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, Montreal, QC, Canada, February 4, 2018. https://doi.org/10.31235/osf.io/8kvf4

Verma, Sahil – Rubin, Julia: Fairness definitions explained. 2018 IEEE/ACM International Workshop on Software Fairness (FairWare), Gothenburg, Sweden., May 29, 2018. https://doi.org/10.1145/3194770.3194776

Wang, Xukang – Wu, Ying Cheg – Ji, Xueliang – Fu, Hongpeng: Algorithmic discrimination: examining its types and regulatory measures with emphasis on US legal practices. Frontiers in Artificial Intelligence, Vol. 7. (2024) https://doi.org/10.3389/frai.2024.1320277

Published
2025-10-20