Comparison of a runoff model enhanced with soil and digital spatial data to conventional runoff models

Keywords: Flash-flood, HEC-HMS, GIS, digital soil mapping (DSM), runoff modelling

Abstract

Flash floods are among the most pressing contemporary challenges in water management, particularly in small catchment areas where short but intense rainfall events are associated with significant impact on the environment. Their occurrence is closely linked to topography, soil hydrological properties, and land cover, making their prediction a complex, interdisciplinary task. Due to climate change, extreme precipitation events are becoming more frequent and intense, necessitating modelling approaches that not only account for the physical characteristics of catchments but also incorporate spatial sensitivity. Although local hydraulic engineering practice relies on a wide range of hydrological models and empirical methods, accurate forecasting requires the mapping of flash flood-prone areas, the assessment of affected catchments, and the optimization of expected runoff volumes. In this study, the Cseres Valley catchment is presented, which has been classified as high-risk based on both actual flood events and risk assessment results. Expected runoff volumes are determined, and a runoff model developed at the University of Miskolc—based on geographic information systems (GIS) and remote sensing data—is tested. The model is intended to serve as an easily interpretable and parameterizable tool for supporting flood risk management and decision-making.

Author Biographies

András Dobai, University of Miskolc, Faculties Faculty of Earth and Environmental Sciences and Engineering

ANDRÁS DOBAI was born in Miskolc in 1988 and graduated in 2012 with a degree (MSc) in geospatial information from the Faculty of Earth and Environmental Sciences and Engineering of the University of Miskolc. Between 2019 and 2021, he served as a regional supervisor at the Miskolc Section Engineering Department of the Northern Hungary Water Management Directorate. He is currently participating in the doctoral training at the Mikoviny Sámuel Doctoral School of Earth Sciences, and his research area is the investigation of flash floods in mountainous and hilly areas. He is a member of the Hungarian Hydrological Society. 

Tibor Bíró , National University of Public Service, Institute of Environmental Sustainability

TIBOR BÍRÓ Graduated in agricultural engineering, environmental engineer. He began his higher education career at the University of Debrecen, then held the positions of Dean and Vice-Rector of Károly Róbert College, and Dean of Szent István University. Later, he was Dean of the Faculty of Water Sciences of the Hungarian University of Economics. Vice-President of the Hungarian Water Resources and Energy Agency. His areas of expertise are inland water management, irrigation, floodplain condition assessment and remote sensing applications for water management. He is the recipient of numerous awards, including the Ferenc Schafarzik Memorial Medal, the Golden Degree of the Order of Merit for Public Service, the Sword of the Barrier, and the Environmental Protection Award. He is the author of more than 230 publications.

Tamás Deák , Univesity of Miskolc, Faculty of Earth and Environmental Sciences and Engineering, Institute of Geography and Geoinformatics

TAMÁS DEÁK was born in 1993, and received his MSc (2016) and MSc (2018) degrees as a geographer from the Faculty of Technical Geosciences of the University of Miskolc. Since 2020, he has worked at the Track Maintenance Department of the Miskolc Railway Regional Directorate of MÁV Zrt. Since September 2021, he has been a PhD student and research assistant at the Institute of Geography and Geoinformatics of the University of Miskolc. The focus of his doctoral research is developing a soil and GIS-based decision support system for the needs of precision agriculture, for the purpose of arable field irrigation. He is the founder of the precision agriculture service provider TalajGuru software.

Endre Dobos , Univesity of Miskolc, Faculty of Earth and Environmental Sciences and Engineering, Institute of Geography and Geoinformatics

DOBOS ENDRE was born in Miskolc in 1968. He graduated in agricultural engineering from the Gödöllő University of Agricultural Sciences in 1993, and in 1996 he graduated in geoinformatics and environmental surveying from the Faculty of Civil Engineering of the Budapest University of Technology. He received his PhD in 1998 from Purdue University in the United States of America in the field of digital soil mapping and small-scale soil database analysis, which is still his research area, supplemented by digital soil mapping procedures. He habilitated at the University of Miskolc in 2021. University professor, head of department, Department of Geography-Geoinformatics, Faculty of Earth and Environmental Sciences, University of Miskolc. Since 2022, he has been the president of the Hungarian Soil Science Society. Member of the Scientific Committee of the Hungarian Hydrological Society.

References

Aaron. C., Venkatesh. M. (2009). Effect of topographic data, geometric configuration and modeling approach on flood inundation mapping, Journal of Hydrology, Vol. 377, Issues 1-2, 2009, pp 131-142. ISSN 0022-1694, https://doi.org/10.1016/j.jhydrol.2009.08.015

Ámon, G., Bene, K., Ray, R., Gribovszki, Z., Kalicz, P. (2024). Improving Flash Flood Hydrodynamic Simulations by Integrating Leaf Litter and Interception Processes in Steep-Sloped Natural Watersheds. Water, 16(5), 750. https://doi.org/10.3390/w16050750

ACQUIS (2020). Kondó községben 2019. június 23-án bekövetkezett vis maior esemény okozta károsodások helyreállítása, ACQUIS Bt. Ebr: 454 528, tervszám: K-12/2020. Kondó település Polgármesteri Hivatalának adattára, pp 3-27.

B.A.Z. MKI (2021). Borsod-Abaúj-Zemplén Megyei Katasztrófavédelmi Igazgatóság „A”, jelű Előzetes Helyszíni vizsgálat jegyzőkönyvei 2010–2020. Kondó település Polgár Mesteri Hivatalának adattára, pp 4-5. 94/2015 (XII.23) FM rendelet – az elháríthatatlan külső ok (vis maior) esetén alkalmazandó egyes szabályokról és a vis maiorral összefüggő egyes miniszteri rendeletek módosításáról.

Chow, V. T. (1959). Ppen-channel hydraulics. Mcgraw-Hill. New York. pp. 680-684.

Czigány, S., Pirkhoffer, E., Geresdi, I. (2009). Environmental impacts of flash floods in Hungary. In Flood Risk Management: Research and Practice., Taylor & Francis Group, pp. 1439-1447. https://doi.org/10.1201/9780203883020.ch169

Daróczi S., Lelkes J. (1999). A szarvasi PENETRONIK talajvizsgáló nyomószonda alkalmazása. Gyakorlati Agrofórum. Különszám a talajművelésről. 10. 7. pp. 16-18.

Deák T., Dobai A., Kovács Z. K., Molnár F., Dobos E. (2024). Spatial extension of soil water regime variables derived from soil moisture values using geomorphological variables in Hungary. Hungarian Geographical Bulletin, 73(4), pp. 337-353. https://doi.org/10.15201/hungeobull.73.4.1

De Rosa, P., Fredduzzi, A., Cencetti, C. (2019). Stream Power Determination in GIS: An Index to Evaluate the Most ’Sensitive’Points of a River. Water, 11(6), 1145. https://doi.org/10.3390/w11061145

Dexter, A.R.; Czyz, E.A., Gate, O.P.A (2007). Method for prediction of soil penetration resistance. Soil Till. Res., 93. pp. 412-419, 2007. https://doi.org/10.1016/j.still.2006.05.011

Dobai A., Dobos E. (2022). Hegy és dombvidéki kisvízgyűjtőkön kialakuló árhullámok elleni védekezés támogatása térinformatikai módszerekkel. Debreceni Egyetem, Térinformatikai Konferencia és Szakkiállítás kiadványa, pp. 109-117. https://doi.org/10.35925/j.multi.2022.2.8

Dobai, A., Vágó, J., Hegedűs, A., Kovács, K.Z., Pecsmány, P., Seres, A., Dobos, E. (2024). GIS and soil property-based development of runoff modeling to assess the capacity of urban drainage systems for flash floods, Hungarian Geographical Bulletin, 73(4), pp. 379-394. https://doi.org/10.15201/hungeobull.73.4.3

Dobai A., Dobos E (2025). A villámárvíz kockázati térképezési módszertan fejlesztése Észak-Magyarországi dombsági területeken. Hidrológiai Közlöny, 105(2), pp. 24-37. https://doi.org/10.59258/hk.19231

Dobos, E. , Daroussin, J. (2005). The derivation of the potential drainage density index (PDD). In An SRTM-Based Procedure to Delineate SOTER Terrain Units on 1:1 and 1:5 millions scales. By Dobos, E., Daroussin, J. and Montanarella, L., Luxemburg, Office for Official Publications for the European Communities, Luxemburg, pp. 40-45.

Emery, C.M., Larnier, K., Liquet, M., Hemptinne, J., Vincent, A., Peña Luque, S. (2021). Extraction of roughness parameters from remotely-sensed products for hydrology applications, Hydrol. Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/hess-2021-551

ÉMKTVF (2013). Észak-Magyarországi Környezetvédelmi, Természetvédelmi és Vízügyi Felügyelőség – 2625-10/2012.sz vízjogi létesítési engedély számú, Kondó záportározó jogerős határozata; 2013. 4 p. Kondó település Polgár Mesteri Hivatalának adattára.

Ennaji, N., Ouakhir, H., Halouan, S., Abahrour, M. (2022). Sediment Transport Index (STI) modeling using the GIS at Small Agricultural Catchment. International Journal of Novel Research in Engineering & Pharmaceutical Sciences. 2. ISSN: 2583-1658.

Feldman A.D. (2000). Hydrologic Modeling System HEC-HMS, Technical Reference Manual; www.hec.usace.army.mil/software/hec-hms/documentation/HEC-HMS_Technical Reference Manual_(CPD-74B).pdf

Ficklin, D., Zhang, M. (2013). A Comparison of the Curve Number and Green-Ampt Models in an Agricultural Watershed. Transactions of the ASABE. 56. pp. 61-69. https://doi.org/10.13031/2013.42590

Galgóczy, Zs. (2004). Morfometriai paraméterek vizsgálata a Nagy-Szamos forrásvidékén. Földrajzi Közlemények 128/1-4, pp. 89-103

Gyalog L. (1996). A Földtani térképek jelkulcsa és a rétegtani egységek rövid leírása – MÁFI kiadvány, Budapest, p. 187.

Harangi, SZ. (2001). Neogene to Quaternary Volcanism of the Carpathian-Pannonian Region. Acta Geologica Hungarica, 44 (2-3). pp. 223-258.

Karagull, D., Frye C., Sayre R., Breyer S., Aniello P., Vaughan, R. Wright, D. (2017). Modeling global hammond landform regions from 250-m elevation data: Karagulle. Transactions in GIS. 21. https://doi.org/10.1111/tgis.12265

Kibirige, D., Dobos, E. (2021). Off-site calibration approach of EnviroScan capacitance probe to assist operational field applications. Water 13. (6): 837. https://doi.org/10.3390/w13060837

Knebl M.R, Yang, Z.-L., Hutchison, K., Maidment, D.R. (2005). Regional scale flood modeling using NEXRAD rainfall, GIS, and HEC-HMS/RAS: a case study for the San Antonio River Basin Summer 2002 storm event, Journal of Environmental Management, Vol. 75, Issue 4, 2005, pp. 325-336, ISSN 0301-4797. https://doi.org/10.1016/j.jenvman.2004.11.024

Koris K. (2002). A hazai hegy- és dombvidéki kisvízgyűjtők árvízhozamainak meghatározása. Vízügyi Közlemények 84(1). pp. 64-77.

Koris K. (2021). Magyarország kisvízfolyásainak árvizei. (Elektronikus változat.) 1-756 o. Országos Vízügyi Főigazgatóság Budapest. https://vpf.vizugy.hu/reg/ovf/doc/koris_bala-tonyi.pdf

Kozák, M., Püspöki, Z. (1995). Correlative relationship between denudational periods and sedimentation in the forelands of the Bükk Mts. (NE Hungary). In CBGA XV. Congress. Athen, CBGA, pp. 340-345.

Kozák, M., Püspöki, Z., Piros, O., László, A. (1998). The structural position of the Bükk Mountains based on tectono- and pebble stratigraphic analyses. In CBGA XVI. Congress. Wien, CBGA, 303.

Luong, T.T., Pöschmann, J., Kronenberg, R., Bernhofer, C. (2021). Rainfall Threshold for Flash Flood Warning Based on Model Output of Soil Moisture: Case Study Wernersbach, Germany. Water 2021, 13. https://doi.org/10.3390/w13081061

Michéli E., Fuchs M., Láng V., Csorba Á., Dobos E., Szegi T., Kele G. (2024). A diagnosztikus szemléletű hazai talajosztályozási rendszer. Útmutató. Második közelítés. Magyar Agrár- és Élettudományi Egyetem, Gödöllő.

Mohamed, M.A. (2020). Classification of Landforms for Digital Soil Mapping in Urban Areas Using LiDAR Data Derived Terrain Attributes: A Case Study from Berlin, Germany. Land, 9(9), 319. https://doi.org/10.3390/land9090319

OVF (2024a). Országos Vízügyi Főigazgatóság - 46 /2024 számú utasítása az Országos Vízügyi Főigazgatóság és a Vízügyi Igazgatóságok racionális méretezési módszer és országos csapadékintenzitási adatok kötelező alkalmazására vonatkozó tervezési előírásairól

OVF (2024b). Országos Vízügyi Főigazgatóság - 47 /2024 számú utasítása az Országos Vízügyi Főigazgatóság és a Vízügyi Igazgatóságok Magyarország hegy- és dombvidéki kisvízfolyásainak árvízszámítási segédletének használatáról

Palicz N., Makkay J. (1978). Linieamman Keramia, magyar régészet az ezredfordulón, neolitukus szakasz 2003, pp. 205-210.

Pásztor L., Szabó, J. Bakacsi Zs. (2010). Application of the Digital Kreybig Soil Information System for the delineation of naturally handicapped areas in Hungary. Agrokémia és Talajtan. 59. p. 47-56. https://doi.org/10.1556/agrokem.59.2010.1.6

Pedrotti, A., Edrotti, A., Pauletto, E.A., Crestana, S., Ferreira, M.M., Dias Jr., M.S., Gomes A.S., Turatti, A.L. (2001). Resistência mecânica à penetração de um Planossolo submetido a diferentes sistemas de cultivo. R. Bras. Ci. Solo, 25. pp. 521-529. 2001. https://doi.org/10.1590/S0100-06832001000300001

Sabeti, R., Stamataki, I., Kjeldsen, T. R. (2024). Reconstructing the 1968 River Chew flash flood: merging a HEC-RAS 2D hydraulic modelling approach with historical evidence. Geomatics, Natural Hazards and Risk, 15(1). https://doi.org/10.1080/19475705.2024.2377655

Sarkadi N., Pirkhoffer E., Lóczy D., Balatonyi L., Geresdi I., Fábián Sz., Varga G., Balogh R., Gradwohl-Valkay A., Halmai Á., Czigány Sz. (2022). Generation of a flood susceptibility map of evenly weighted conditioning factors for Hungary. Geographica Pannonica, 26(3), pp. 200-214. https://doi.org/10.5937/gp26-34866

Szőllősi I. (2003). Talajok tömörödöttségi állapotának jellemzése penetrométeres vizsgálatokkal, doktori (PhD) értekezés, Debreceni Egyetem, https://dea.lib.unideb.hu/server/api/core/bitstreams/575d22ea-ba21-47b8-8bac-1f9be5e2b560/content.

Zsuffa I. (1997). Műszaki hidrológia II.,4.4 – A vízjárás területi alakulásának vizsgálata, 235 p. Műegyetemi Kiadó.

Vágó J. (2012). A kőzetminőség szerepe a Bükkalja völgy- és vízhálózatának kialakulásában, PhD értekezés Miskolc, pp 18-20.

Várallyay, Gy. Fórizs J. (1966). A helyszíni talajfelvételezés módszertana (Methodology of in situ soil survey). In A genetikus üzemi talajtérképezés módszerkönyve. Ed.: Szabolcs, I., Budapest, Táncsics Könyvkiadó, 19-164.

Wilcox, B.P., Rawls, W.J., Brakensiek, D.L., Wright. J.R. (1990). Predicting runoff from rangeland catchments: A comparison of two models. Water Resources Res. 26(10): pp. 2401-2410. https://doi.org/10.1029/WR026i010p02401

Xiaowei Z., Warren, C.J., Spiers, G., Paul V. (2024). Comparison of the integral suspension pressure (ISP) and the hydrometer methods for soil particle size analysis, Geoderma, Volume 442, 2024, 116792, ISSN 0016-7061. https://doi.org/10.1016/j.geoderma.2024.116792

/2009. (V. 14.) FVM rendelet az Európai Mezőgazdasági Vidékfejlesztési Alapból nyújtott agrár-környezetgazdálkodási támogatások igénybevételének részletes feltételeiről

URL1: penetronik.hu – A Penetronik elektronikus talajvizsgáló nyopmószonda használati útmutatója, E.N.S Informatikai és Rendszerintegrációs Zrt.

URL2: hec.usace.army.mil- https://www.hec.usace.army.mil/confluence/rasdocs/ras1dtechref/6.1/overview-of-optional-capabilities/modeling-precipitation-and-infiltration/green-ampt

URL3: Meter-Pario manual: https://www.labcell.com/media/136896/pario%20manual%20-%20email.pdf

URL4: https://www.esri.com/arcgis-blog/products/analytics/analytics/predict-floods-with-unit-hydrographs?utm_source=chatgpt.com

URL5: https://www.enfo.hu/keptar/1461

URL6: https://www.met.hu/

Published
2025-11-20
How to Cite
DobaiA., BíróT., DeákT., & DobosE. (2025). Comparison of a runoff model enhanced with soil and digital spatial data to conventional runoff models. Hungarian Journal of Hydrology, 105(4), 22-46. https://doi.org/10.59258/hk.20916
Section
Scientific Papers