Operational methodology for determining environmental flow

Keywords: Integrated water resources management, operational water management, utilizable water resources, ecological flow, environmental flow

Abstract

As part of Subproject 6C of the National Laboratory for Water Science and Water Security Project (RRF-2.3.1-21-2022-00008), we are currently reviewing the methodology for determining ecological water demands related to surface waters. This study presents our findings to date.

The lawful application of ecological water demand in the field of operational water management has become a fundamental task. At the same time, in the context of mitigating and adapting to the impacts of climate change, it represents a continuously revisable responsibility for water resource managers. It is crucial to adopt a consensus-based methodology so that ecological water demand is not viewed merely as a limiting factor within water resources management, but rather as an essential water use that contributes to achieving or maintaining good water status, the survival of natural ecosystems, and, through this, the availability of sufficient and high-quality water resources for sustainable and equitable water uses.

Following a review of the international literature, we provide recommendations on the use of key terms. We propose to adopt the concept of environmental flow requirements, which enables the reconciliation of the ecological water demands – describing the needs of aquatic ecosystems – with the water demands of society within the framework of integrated water resources management.

As a first step in defining environmental flow requirements, we recommend a simple, standardizable hydrological methodology. The key innovative element of this methodology is that the minimum ecological flow value is determined on a monthly basis, depending on the size of the river basin. Similarly, the value of the natural water resource with 80% exceedance probability must also be calculated monthly. The difference between these two values represents the utilizable water resources, i.e., the maximum water quantity available for use by society – effectively defining an upper limit. This would ensure that the actual runoff available to ecosystems – shaped by water uses follows the natural flow dynamics of a given year, while also enabling more efficient utilization of water resources.

In line with the concept of environmental flow requirements, the ecological water demand values determined using this hydrological method provide a first approximation of the real water conditions necessary for the survival of natural ecosystems. In order to conserve nature, the specific ecological water demand values calculated in this way can be reviewed considering the hydromorphological parameters of the watercourse and the needs of biological elements. If necessary – for example, in data-deficient catchments, or in the presence of protected natural values and/or increased societal water demand – the ecological water demand may be modified based on a holistic assessment methodology, reflecting compromises agreed upon by societal stakeholders

Author Biographies

Máté Chappon, Széchenyi István University, Department of Transportation Engineering and Water Engineering
MÁTÉ CHAPPON  is a certified civil engineer (Budapest University of Technology and Economics, 2014). He is an assistant professor at the Department of Transportation Engineering and Water Engineering of Széchenyi István University . He is currently a fourth-year doctoral student at the Multidisciplinary Doctoral School of Technical Sciences of Széchenyi István University. His research area is integrated water resources management, with a special focus on the scientific foundation of decision-making based on the value of water. He is the secretary of the Water Management Working Committee of the Hungarian Academy of Sciences.          
Emil Janák, VTK Innosystem Ltd. H-1117 Budapest, Prielle Kornélia str. . 47-49. Hungary

JANÁK EMIL is a water and wastewater technologist, certified water construction engineer (Budapest University of Technology), a water utility designer at the Planning Institute since 1982, an operations group leader at the North Transdanubian Water and Sewerage Works since 1984, and then worked at the North Transdanubian Water Directorate from 1987 to 2013. First as a water resources management group leader, later as a water management department leader, and finally as a director from 1999. He currently works as a designer at VTK Innosystem Kft. Member of the Hungarian Hydrological Society, member of the design expert qualification board of the Water Management and Water Construction Section of the Hungarian Chamber of Engineers.

Ferenc , VTK Innosystem Kft. 1117 Budapest, Prielle Kornélia u. 47-49.

FERENC SZILÁGYI PhD graduated as a secondary school teacher majoring in biology and chemistry, he is a honorary university professor of the Department of Water Sanitary and Environmental Engineering at the Faculty of Civil Engineering of the Budapest University of Technology and Economics. His main areas of expertise are hydrobiology, watershed management, water quality control. He is a member of the Hungarian Hydrological Society (MHT), the Hungarian Water Association (MaSzeSz), and the Chamber of Engineers of Budapest and Pest County. He is member of the editorial board of Hidrológiai Közlöny (journal of the Hungarian Hydrological Society) and the Journal of Fisheries Science.

Mikós Szalay, VTK Innosystem Ltd. H-1117 Budapest, Prielle Kornélia str. . 47-49. Hungary

MIKLÓS SZALAY† is a certified hydraulic engineer (Budapest University of Technology, 1975), certified hydrologist (Dipl. Hydrol, Delft, IHE 1980) and a member of the Hungarian Hydrological Society. He had decades of experience in the water sector. In recent years, he worked as a specialist in water resource management and hydrological tasks at the Watershed Management Department of the National Water Management Directorate and at VIZITERV Environ Nonprofit Kft. He passed away on December 24, 2024.

Katalin Bene, Széchenyi István University, Department of Transportation Engineering and Water Engineering
KATALIN BENE  is a civil engineer with a PhD (BME, 1987), obtained an MSc degree in hydraulic engineering from the University of South Carolina in 1991, and a PhD degree from the same university in 1996. After obtaining her doctoral degree, she worked as a postdoctoral researcher and lecturer at the University of South Carolina. Since 2011, she has been an associate professor at the Department of Transportation and Hydraulic Engineering of Széchenyi István University and the head of the Water Management Research Group. She is the chair of the Water Management Working Committee of the VEAB, and the professional leader of several domestic and international research projects (e.g. Horizon, KEHOP). Since 2015, she has been a public body member of the Hungarian Academy of Sciences.      

References

Arthington, A.R., Zalucki, M.J. (1998). Comparative evaluation of environmental flow assessment techniques: Review and methods. - Land and Water Resources Research and Development Corporation: Canberra, Australian Capitol Territory.

Benetti, A.D., Lanna, A.E., Cobalchini, M.S. (2004). Current practices for establishing environmental flows in Brazil. - River Research and Applications, 20. pp. 427-444. https://doi.org/10.1002/rra.758

Brisbane Declaration, (2007). Summary Findings and a Global Action Agenda. - 10th International River Symposium and International Environmental Flows Conference, 3-6 September 2007, Brisbane, Australia, https://www.conservationgateway.org/ConservationPractices/Freshwater/

Dévai G., Aradi C. (1998). Ökológiai vízminőség. A nemzeti vízgazdálkodási stratégia kidolgozásának alapozó tanulmánya, MTA, Budapest, kézirat.

Dévai G., Aradi C., Csabai Z. (1998a). Ökológiai vízigény. A nemzeti vízgazdálkodási stratégia kidolgozásának alapozó tanulmánya, MTA, Budapest, kézirat.

Dévai G., Nagy S., Wittner, I., Aradi Cs., Csabai Z., Tóth A. (1998b). A vízi és a vizes élőhelyek sajátosságai és tipológiája oktatási segédanyag, KLTE Ökológiai Tanszéke, Hidrobiológiai Részleg, 1998, Debrecen.

Domokos M. (1999). A mederben hagyandó vízhozam értelmezésének múltja és jövője, Vízügyi Közlemények, LXXXI. évfolyam, 1. füzet. 169-171

EC (2003). Identification and Designation of Heavily Modified and Artificial Water Bodies, Guidance Document No. 4, Produced by Working Group 2.2 – HMWB, ISBN 92-894-5124-6, ISSN 1725-1087

EC (2015). Ecological flows in the implementation of the Water Framework Directive. Guidance Document No. 31, - ISBN 978-92-79-45758-6, ISSN 1725-1087.

EU (2015). Guidance document on the application of water balances for supporting the implementation of the WFD. – ISBN 978-92-79-52021-1

Grabowski, R.C., Gurnell, A.M. (2016). Hydrogeomorphology–ecology interactions in river systems. - River Research and Applications, 32. 139-141. https://doi.org/10.1002/rra.2974

GWP (2003). https://www.gwp.org/en/About/why/the-need-for-an-integrated-approach/:[Elérve: 2025.04.20.].

Horváth Á. (2024). Magyarország határmenti térségeinek vízkészletmegosztási előírásai esettanulmány a Lajta nemzetközi vízátadási kérdéseire vonatkozóan. - Hidrológiai Vándorgyűlés XLI., Szolnok. https://www.hidrologia.hu/vandorgyules/41/word/0206_horvath_agnes.pdf [Elérve: 2025.04.20.].

Horne, A.C., Webb, J.A., Stewardson, M.J., Richter, B., Acreman, M. (2017). (Eds.): Water for the environment from policy and science to implementation and management. – Elsevier Publishing, London, Academic Press, ISBN: 978-0-12-803907-6

Ijjas I. (2019). Lehet-e integrált vízgazdálkodás intézményi integráció nélkül?, Hidrológiai Közlöny 99. évf. 1. szám, pp. 3-11. https://www.hidrologia.hu/wp-content/uploads/2023/11/HK2019_01.pdf [Elérve: 2025.04.20.].

King, J., Tharme, R.E., Brown, C. (2008). Environmental Flow Assessments for Rivers: - Manual for the Building Block Methodology (updated edition). Gezina, Water Research Commission.

King, J.M., Tharme, R.E., de Villiers, M.S. (2003). Environmental Flow Assessments for Rivers. - Manual for the Building Block Methodology. Pretoria, Water Research Commission.

Linnansaari, T., Monk, W.A., Baird, D.J., Curry, R.A. (2013). Review of Approaches and Methods to Assess Environmental Flows across Canada and Internationally. - Research Document 2012/039. Ottawa, Canadian Science Advisory Secretariat.

Merenlender, A.M., Matella, M.K. (2013). Maintaining and restoring hydrologic habitat connectivity in Mediterranean streams: an integrated modeling framework. - Hydrobiologia, 719:509–525. https://doi.org/10.1007/s10750-013-1468-y

Merritt, D.M., Scott, M.L. LeRoy, Poff, N., Auble, G.T., Lytle, D.A. (2010). Theory, methods and tools for determining environmental flows for riparian vegetation: riparian vegetation-flow response guilds. Freshwater Biology, 55:206–225.

OVF (2013). Vízrajzi fogalomtár. http://www.ovf.hu/hu/vizrajzi-fogalomtar [Elérve: 2025.04.20.].

Pahl-Wost, C., Arthington, A., Bogárdi, J. (2013). Environmental flows and water governance: managing sustainable water uses. Science Direkt - https://www.researchgate.net/publication/250916376_Environmental_ flows_and_water_governance_Managing_sustainable_water_uses [Elérve: 2024.10.03]

Poff, N.L., Richter, B.D., Arthington, A.H., Bunn, S.E., Naiman, R.J., Kendy, E., Acreman, M., C. Apse, B.P. Bledsoe, M.C. Freeman, J. Henriksen, R.B. Jacobson, J.G. Kennen, D.M. Merritt, Keeffe, J.H.O., Olden, J.D., Rogers, K., Tharme, R.E., Warner, A. (2010). The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards. - Freshwater Biology, 55: pp. 147-170. https://doi.org/10.1111/j.1365-2427.2009.02204.x

Richter, B.D., Warner, A.T., Meyer, J.L., Lutz, K. (2006). A collaborative and adaptive process for developing environmental flow. - River Res. Applic. 22, 297-318. https://doi.org/10.1002/rra.892

Rodríguez-Gallego, L., Chreties, C., Crisci, M. M., Fernández, N. Colombo, B. Lanzilotta, M. Saravia, Neme, C., Sabaj S., Conde, D. (2012). Fortalecimiento del concepto de Caudales Ambientales como Herramienta para la Gestión Integrada de los Recursos Hídricos. - Montevideo, PNUMA y Vida Silvestre Uruguay.

Speed, R., Gippel, C., Bond, N., Bunn, S., Qu, X., Zhang Y., Liu, W., Jiang, X. (2012). Assessing River Health and Environmental Flow Requirements in Chinese Rivers. - Brisbane, International Water Centre.

Szalay M. (2009). „Vízgyűjtő-gazdálkodási tervek készítése” című KEOP-2.5.0. A kódszámú projekt megvalósítása a tervezési alegységekre, valamint részvízgyűjtőkre, továbbá ezek alapján az országos vízgyűjtő-gazdálkodási terv, valamint a terv környezeti vizsgálatának elkészítése (TED [2008/S 169-226955]): Fiziko-kémiai és kémiai minősítő rendszer. - Témabeszámoló a VKKI részére, Háttéranyag, kézirat http://www2.vizeink.hu/files2/2_3_hatteranyag_pdf.zip [Elérve: 2025.04.20.].

Tharme, R.E. (2003). A global perspective on environmental flow assessment: emerging trend sin the development and application of environmental flow methodologies for rivers. - Rivers Research and Application 19, pp. 397-441. https://doi.org/10.1002/rra.892

VGT1 (2010). Magyarország első Vízgyűjtő-gazdálkodási Terve. 1127/2010. (V.21.) Korm. határozat melléklete.

VGT2 (2016). Magyarország Vízgyűjtő-gazdálkodási Terve. – OVF, https://vizeink.hu/vizgyujto-gazdalkodasi-terv-2012-2015/vgt2-elfogadott/

VGT3 (2022). Magyarország Vízgyűjtő-gazdálkodási Terve. – OVF, https://vizeink.hu/vizgyujto-gazdalkodasi-terv-2019-2021/vgt3-elfogadott/

Vízkészletgazdálkodási évkönyv (1962). Vízgazdálkodási Tudományos Kutató Intézet, Budapest

Vízkészletgazdálkodási évkönyv (1971). Vízgazdálkodási Tudományos Kutató Intézet, Budapest

WFD (2000). Directive of the European Parlament and of the Council 2000/60/EC Establishing a framework for community action in the field of water policy. European Union, Luxembourgh PE-CONS 3639/1/00 REV 1.

Published
2025-09-14
How to Cite
Chappon M., JanákE., Ferenc, SzalayM., & BeneK. (2025). Operational methodology for determining environmental flow. Hungarian Journal of Hydrology, 105(3), 13-31. https://doi.org/10.59258/hk.20604
Section
Scientific Papers