Estimated 1-km resolution monthly land evaporation in Hungary between 2000 and 2022
Abstract
There is a growing need for reliable estimates of evaporation for the analysis of the causes and consequences of global warming. Estimation of land evaporation rates, based on five basic meteorological variables (net radiation, air temperature, dew point, wind speed and air pressure) has become possible with the development of the complementary relationship of evaporation. With the help of ERA5-Land data, we prepared 0.1° resolution evaporation maps for Hungary on a monthly basis for the period of 2000-2022, and then using MODIS surface temperature values measured by remote sensing, we increased the spatial resolution to 1-km. The mean annual value of land evaporation became 538 mm/year for the study period, with a linear increase of 0.42 mm per year. Interpreting spatial and temporal changes in evaporation, however, requires further studies. In order to facilitate this process and aid stake holders and experts in shaping the future of water resources management in the country we share the results. The data are freely accessible to anyone at figshare.com.
References
Andreas, E.L., Jordan, R.E., Mahrt, L., Vickers, D. (2013). Estimating the Bowen ratio over the open and ice-covered ocean. Journal of Geophysical Research: Oceans, 118, pp. 4334-4345. https://doi.org/10.1002/jgrc.20295
Bastiaanssen, W., Menenti, M., Feddes, R., Holtslag, A. (1998). A remote sensing surface energy balance algorithm for land (SEBAL): 1. Formulation. Journal of Hydrology, 212, pp. 198-212. https://doi.org/10.1016/S0022-1694(98)00253-4
Báder, L. (2025). The Climatic Energy Balance Diagram (CEBD) highlights changes in the hydrological cycle of the Danube River basin. Journal of Hydrology and Hydromechanics, 73(1), pp. 24-33. https://doi.org/10.2478/johh-2025-000
Báder, L., Szilágyi, J. (2023). Widening gap of land evaporation to reference evapotranspiration implies increasing vulnerability to droughts in Hungary. Periodica Polytechnica Civil Engineering, 67(4), pp. 1028-1037. https://doi.org/10.3311/PPci.21836
Bouchet, R. (1963). Evapotranspiration reelle et potentielle, signification climatique. International Association of Hydrological Sciences Publications, 62, pp. 134-142.
Brutsaert, W. (1982). Evaporation into the atmosphere: Theory, history, and applications, Dordrecht. Holland: D. Reidel, p. 299. https://doi.org/10.1007/978-94-017-1497-6
Dingman, S.L. (2015). Physical Hydrology, 3rd Ed., pp. 643. Waveland Press, Long Grove, IL, USA. ISBN 13: 978-1-4786-1118-9
Ellison, D., Pokorný, J., Wild, M., (2024). Even cooler insights: On the power of forests to (water the Earth and) cool the planet. Global Change Biology, 30, e17195. https://doi.org/10.1111/gcb.17195
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Thépaut, J.-N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730). pp. 1999-2049. https://doi.org/10.1002/qj.3803
Kovács, Á. (2011). Tó- és területi párolgás becslésének pontosítása és magyarországi alkalmazásai. PhD Értekezés, BME, pp. 101.
Kim, D., Lee, W.‐S., Kim, S.T., Chun, J. A. (2019). Historical drought assessment over the contiguous United States using the generalized complementary principle of evapotranspiration. Water Resources Research, 55(7), 6244-6267. https://doi.org/10.1029/2019WR024991
Kucsara, M., Gribovszki, Z., Kalicz, P., Víg, P. (2008). A Hidegvíz-völgyi Erdészeti Hidrológia Kutatóhely. NYME EMK Geomatikai, Erdőfeltárási és Vízgazdálkodási Intézet, pp. 27. ISBN 978-963-9883-24-6
Liu, S., Feng, Z., Fang, S., Liu, G., Yuan, X., Shang, B., et al. (2024). Assessing the accuracy of eddy‐covariance measurement at different source emission scenarios. Journal of Geophysical Research: Atmospheres, 129. https://doi.org/10.1029/2023JD040701
Morton, F.I. (1983). Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology. Journal of Hydrology, 66. pp. 1-76. https://doi.org/10.1016/0022-1694(83)90177-4
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G. et al. (2021). ERA5-Land: a state-of-the-art global reanalysis dataset for land applications. Earth System Science Data, 13, pp. 4349-4383. (https://cds.climate.copernicus.eu/datasets/reanalysis-era5-land-monthly-means?tab=overview) https://doi.org/10.5194/essd-13-4349-2021
Nagy, Z., Pintér, K., Czóbel, S., Balogh, J., Horváth, L., Fóti, S., Barcza, Z., Weidinger, T., Csintalan, Z., Dinh, N.Q., Grósz, B., Tuba, Z. (2007). The carbon budget of semi-arid grassland in a wet and a dry year in Hungary. Agriculture and Ecosystem Environment 121(1-2), pp. 21-29. https://doi.org/10.1016/j.agee.2006.12.003
Négyesi K., Nagy, E.D. (2023). Esemény alapú csapadék-lefolyás modellezés különböző típusú csapadékadatok használatával. Hidrológiai Közlöny 103(3), pp. 44-53. https://doi.org/10.59258/HK.12339
Penman, H.L. (1948). Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 193, pp. 120-145. https://doi.org/10.1098/rspa.1948.0037
Pintér, K., Barcza, Z., Balogh, J., Czóbel, S., Csintalan, Z., Tuba, Z., Nagy, Z. (2008). Interannual variability of grasslands’ carbon balance depends on soil type. Community Ecology 9(Suppl1), pp. 43-48. https://doi.org/10.1556/ComEc.9.2008.S.7
Priestley, C.H.B., Taylor, R.J. (1972). On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 100(2), pp. 81-92. https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
Senay, G.B., Leake, S., Nagler, P.L., Artan, G., Dickinson, J., Cordova, J.T., Glenn, E.P. (2011). Estimating basin scale evapotranspiration (ET) by water balance and remote sensing methods. Hydrological Processes, 25(26), pp. 4037-4049. https://doi.org/10.1002/hyp.8379
Szilágyi, J. (2023). Egy termodinamikai alapú, rugalmas, minimális adatigényű területi párolgásbecslő módszer bemutatása a hazai vízgazdálkodás megtámogatásához. Hidrológiai Közlöny, 103(4), pp. 25-34. https://doi.org/10.59258/hk.13171
Szilágyi, J., Kovács, A. (2010). Complementary-relationship-based evapotranspiration mapping (CREMAP) technique for Hungary. Periodica Polytechnica Civil Engineering, 54(2), pp. 95-100. doi: 10.3311/pp.ci.2010-2.04
Szilágyi, J., Kovács, A. (2011). A calibration-free evapotranspiration mapping technique for spatially-distributed regional-scale hydrologic modeling. Journal of Hydrology and Hydromechanics, 59(2), pp. 118-130. https://doi.org/10.2478/v10098-011-0010-z
Szilágyi, J., Kovács, Á., Józsa, J. (2011). A calibration-free evapotranspiration mapping (CREMAP) technique, in Labedzki, L (ed.) Evapotranspiration. INTECH, Rijeka, Croatia, pp. 257-274. ISBN 978-953-307-251-7. http://www.intechopen.com/books/show/title/evapotranspiration
Szilágyi, J., Crago, R., Qualls, R. (2017). A calibration-free formulation of the complementary relationship of evaporation for continental-scale hydrology. Journal of Geophysical Research: Atmosphere, 122(1), pp. 264-278. https://doi.org/10.1002/2016JD025611
Szilágyi, J., Ma, N., Crago, R.D., Qualls, R.J. (2022). Power-function expansion of the polynomial complementary relationship of evaporation. Water Resources Research, 58(11), e2022WR033095. https://doi.org/10.1029/2022WR033095
Szilágyi, J., Ma, N., Crago, R.D. (2024). Revisiting the global distribution of the exponent of the power-function complementary relationship of terrestrial evaporation: insights from an isenthalpic index. Journal of Hydrology, 642, 131864. https://doi.org/10.1016/j.jhydrol.2024.131864
Szilágyi, J., Báder, L., Józsa, J. (2025). Estimated 1km resolution monthly land evaporation in Hungary between 2000 and 2022. Szilágyi, J., Báder, L., Józsa, J. (2025). Estimated 1km resolution monthly land evaporation in Hungary between 2000 and 2022. https://doi.org/10.6084/m9.figshare.c.8016979
Tetens, O. (1930). Über einige meteorologische Begriffe. Zeitschrift für Geophysik, 6, pp. 297-309.
Wan, Z., Hook, S., Hulley, G. (2015). MOD11A2 MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 1km SIN Grid V006. NASA Land Processes Distributed Active Archive Center. https://doi.org/10.5067/MODIS/MOD11A2.006
URL1: https://www.copernicus.eu/en/carbo-europe-ip)
URL2: CORINE felszínborítottság adatbázis. Elérhető: https://land.copernicus.eu/pan-european/corine-land-cover
URL3: HungaroMet (korábban Országos Meteorológiai Szolgálat – OMSZ). Meteorológiai Adattár. Elérhető: https://odp.met.hu/climate/homogenized_data/gridded_data_series/daily_data_series/
URL4: Országos Vízügyi Főigazgatóság (OVF). Vízügyi Adattár. Elérhető: https://www.ovf.hu/kozerdeku/adatigenyles
Copyright (c) 2025 József Szilágyi, László Báder, János Józsa

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.