Estimated 1-km resolution monthly land evaporation in Hungary between 2000 and 2022

Keywords: Land evaporation, function complementary relationship of evaporation, evapotranspiration, ERA5-Land reanalysis, MODIS land surface temperature

Abstract

There is a growing need for reliable estimates of evaporation for the analysis of the causes and consequences of global warming. Estimation of land evaporation rates, based on five basic meteorological variables (net radiation, air temperature, dew point, wind speed and air pressure) has become possible with the development of the complementary relationship of evaporation. With the help of ERA5-Land data, we prepared 0.1° resolution evaporation maps for Hungary on a monthly basis for the period of 2000-2022, and then using MODIS surface temperature values measured by remote sensing, we increased the spatial resolution to 1-km. The mean annual value of land evaporation became 538 mm/year for the study period, with a linear increase of 0.42 mm per year. Interpreting spatial and temporal changes in evaporation, however, requires further studies. In order to facilitate this process and aid stake holders and experts in shaping the future of water resources management in the country we share the results. The data are freely accessible to anyone at figshare.com.

Author Biographies

József Szilágyi, Budapest University of Technology and Economics, Department of Hydraulic and Water Resources Engineering
JÓZSEF SZILÁGYI obtained his diploma in meteorology with a specialization in hydrology from the Faculty of Natural Sciences of ELTE in 1989. Until 1992, he was an operational hydrometeorologist at the National Hydrological Forecasting Center of VITUKI. In 1994, he received an MSc in hydrology from the University of New Hampshire (USA), and in 1997, a PhD from the University of California (Davis). Until 2005, he was a hydrological researcher at the University of Nebraska (Lincoln), then an associate professor at the Budapest University of Technology and Economics, and since 2009, a university professor. He is currently a member of the editorial board of the Journal of Hydrology, the chairman of the Water Management Science Committee of the Hungarian Academy of Sciences, and a corresponding member of the Hungarian Academy of Sciences from 2025.          
László Báder, Budapest University of Technology and Economics, Department of Hydraulic and Water Resources Engineering

LÁSZLÓ BÁDER is an engineer-geographer, member of the Hungarian Hydrological Society. He is currently a doctoral student at the Faculty of Civil Engineering, Hungarian Hydrological Society, Budapest University of Technology and Economics. His research interests include the estimation of evaporation and the study of the development of the climate water and energy balance. He gained work experience in the competitive sector, while also working in social organizations and participating in several national programs, such as the development of the National Forest Strategy.

János Józsa, Budapest University of Technology and Economics, Department of Hydraulic and Water Resources Engineering

JÁNOS JÓZSA obtained his master's degree in civil engineering from the Budapest University of Technology in 1981. After starting at VITUKI, he was a design engineer at VIZITERV for three years, with several assignments in Algeria. He returned to VITUKI in 1985, to the Numerical Hydraulics Department, as a scientific associate. In 1990-91, he was a visiting researcher at the Finnish Environmental Institute, specializing in the measurement and numerical modeling of lake flow and mixing processes. He obtained his PhD in 1993. He has been a lecturer at BME since 1994, head of department for 13 years, and rector for 6 years. He received his doctorate from the Hungarian Academy of Sciences in 2003, corresponding member of the Hungarian Academy of Sciences in 2013, and full member in 2019. Between 2020-23, he was the Chairman of the Department of Engineering Sciences of the Hungarian Academy of Sciences. He is currently the Chairman of the Project Steering Board of the National Laboratory for Water Science and Water Safety. In 2024, he received the Széchenyi Prize.

References

Andreas, E.L., Jordan, R.E., Mahrt, L., Vickers, D. (2013). Estimating the Bowen ratio over the open and ice-covered ocean. Journal of Geophysical Research: Oceans, 118, pp. 4334-4345. https://doi.org/10.1002/jgrc.20295

Bastiaanssen, W., Menenti, M., Feddes, R., Holtslag, A. (1998). A remote sensing surface energy balance algorithm for land (SEBAL): 1. Formulation. Journal of Hydrology, 212, pp. 198-212. https://doi.org/10.1016/S0022-1694(98)00253-4

Báder, L. (2025). The Climatic Energy Balance Diagram (CEBD) highlights changes in the hydrological cycle of the Danube River basin. Journal of Hydrology and Hydromechanics, 73(1), pp. 24-33. https://doi.org/10.2478/johh-2025-000

Báder, L., Szilágyi, J. (2023). Widening gap of land evaporation to reference evapotranspiration implies increasing vulnerability to droughts in Hungary. Periodica Polytechnica Civil Engineering, 67(4), pp. 1028-1037. https://doi.org/10.3311/PPci.21836

Bouchet, R. (1963). Evapotranspiration reelle et potentielle, signification climatique. International Association of Hydrological Sciences Publications, 62, pp. 134-142.

Brutsaert, W. (1982). Evaporation into the atmosphere: Theory, history, and applications, Dordrecht. Holland: D. Reidel, p. 299. https://doi.org/10.1007/978-94-017-1497-6

Dingman, S.L. (2015). Physical Hydrology, 3rd Ed., pp. 643. Waveland Press, Long Grove, IL, USA. ISBN 13: 978-1-4786-1118-9

Ellison, D., Pokorný, J., Wild, M., (2024). Even cooler insights: On the power of forests to (water the Earth and) cool the planet. Global Change Biology, 30, e17195. https://doi.org/10.1111/gcb.17195

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Thépaut, J.-N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730). pp. 1999-2049. https://doi.org/10.1002/qj.3803

Kovács, Á. (2011). Tó- és területi párolgás becslésének pontosítása és magyarországi alkalmazásai. PhD Értekezés, BME, pp. 101.

Kim, D., Lee, W.‐S., Kim, S.T., Chun, J. A. (2019). Historical drought assessment over the contiguous United States using the generalized complementary principle of evapotranspiration. Water Resources Research, 55(7), 6244-6267. https://doi.org/10.1029/2019WR024991

Kucsara, M., Gribovszki, Z., Kalicz, P., Víg, P. (2008). A Hidegvíz-völgyi Erdészeti Hidrológia Kutatóhely. NYME EMK Geomatikai, Erdőfeltárási és Vízgazdálkodási Intézet, pp. 27. ISBN 978-963-9883-24-6

Liu, S., Feng, Z., Fang, S., Liu, G., Yuan, X., Shang, B., et al. (2024). Assessing the accuracy of eddy‐covariance measurement at different source emission scenarios. Journal of Geophysical Research: Atmospheres, 129. https://doi.org/10.1029/2023JD040701

Morton, F.I. (1983). Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology. Journal of Hydrology, 66. pp. 1-76. https://doi.org/10.1016/0022-1694(83)90177-4

Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G. et al. (2021). ERA5-Land: a state-of-the-art global reanalysis dataset for land applications. Earth System Science Data, 13, pp. 4349-4383. (https://cds.climate.copernicus.eu/datasets/reanalysis-era5-land-monthly-means?tab=overview) https://doi.org/10.5194/essd-13-4349-2021

Nagy, Z., Pintér, K., Czóbel, S., Balogh, J., Horváth, L., Fóti, S., Barcza, Z., Weidinger, T., Csintalan, Z., Dinh, N.Q., Grósz, B., Tuba, Z. (2007). The carbon budget of semi-arid grassland in a wet and a dry year in Hungary. Agriculture and Ecosystem Environment 121(1-2), pp. 21-29. https://doi.org/10.1016/j.agee.2006.12.003

Négyesi K., Nagy, E.D. (2023). Esemény alapú csapadék-lefolyás modellezés különböző típusú csapadékadatok használatával. Hidrológiai Közlöny 103(3), pp. 44-53. https://doi.org/10.59258/HK.12339

Penman, H.L. (1948). Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 193, pp. 120-145. https://doi.org/10.1098/rspa.1948.0037

Pintér, K., Barcza, Z., Balogh, J., Czóbel, S., Csintalan, Z., Tuba, Z., Nagy, Z. (2008). Interannual variability of grasslands’ carbon balance depends on soil type. Community Ecology 9(Suppl1), pp. 43-48. https://doi.org/10.1556/ComEc.9.2008.S.7

Priestley, C.H.B., Taylor, R.J. (1972). On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 100(2), pp. 81-92. https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2

Senay, G.B., Leake, S., Nagler, P.L., Artan, G., Dickinson, J., Cordova, J.T., Glenn, E.P. (2011). Estimating basin scale evapotranspiration (ET) by water balance and remote sensing methods. Hydrological Processes, 25(26), pp. 4037-4049. https://doi.org/10.1002/hyp.8379

Szilágyi, J. (2023). Egy termodinamikai alapú, rugalmas, minimális adatigényű területi párolgásbecslő módszer bemutatása a hazai vízgazdálkodás megtámogatásához. Hidrológiai Közlöny, 103(4), pp. 25-34. https://doi.org/10.59258/hk.13171

Szilágyi, J., Kovács, A. (2010). Complementary-relationship-based evapotranspiration mapping (CREMAP) technique for Hungary. Periodica Polytechnica Civil Engineering, 54(2), pp. 95-100. doi: 10.3311/pp.ci.2010-2.04

Szilágyi, J., Kovács, A. (2011). A calibration-free evapotranspiration mapping technique for spatially-distributed regional-scale hydrologic modeling. Journal of Hydrology and Hydromechanics, 59(2), pp. 118-130. https://doi.org/10.2478/v10098-011-0010-z

Szilágyi, J., Kovács, Á., Józsa, J. (2011). A calibration-free evapotranspiration mapping (CREMAP) technique, in Labedzki, L (ed.) Evapotranspiration. INTECH, Rijeka, Croatia, pp. 257-274. ISBN 978-953-307-251-7. http://www.intechopen.com/books/show/title/evapotranspiration

Szilágyi, J., Crago, R., Qualls, R. (2017). A calibration-free formulation of the complementary relationship of evaporation for continental-scale hydrology. Journal of Geophysical Research: Atmosphere, 122(1), pp. 264-278. https://doi.org/10.1002/2016JD025611

Szilágyi, J., Ma, N., Crago, R.D., Qualls, R.J. (2022). Power-function expansion of the polynomial complementary relationship of evaporation. Water Resources Research, 58(11), e2022WR033095. https://doi.org/10.1029/2022WR033095

Szilágyi, J., Ma, N., Crago, R.D. (2024). Revisiting the global distribution of the exponent of the power-function complementary relationship of terrestrial evaporation: insights from an isenthalpic index. Journal of Hydrology, 642, 131864. https://doi.org/10.1016/j.jhydrol.2024.131864

Szilágyi, J., Báder, L., Józsa, J. (2025). Estimated 1km resolution monthly land evaporation in Hungary between 2000 and 2022. Szilágyi, J., Báder, L., Józsa, J. (2025). Estimated 1km resolution monthly land evaporation in Hungary between 2000 and 2022. https://doi.org/10.6084/m9.figshare.c.8016979

Tetens, O. (1930). Über einige meteorologische Begriffe. Zeitschrift für Geophysik, 6, pp. 297-309.

Wan, Z., Hook, S., Hulley, G. (2015). MOD11A2 MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 1km SIN Grid V006. NASA Land Processes Distributed Active Archive Center. https://doi.org/10.5067/MODIS/MOD11A2.006

URL1: https://www.copernicus.eu/en/carbo-europe-ip)

URL2: CORINE felszínborítottság adatbázis. Elérhető: https://land.copernicus.eu/pan-european/corine-land-cover

URL3: HungaroMet (korábban Országos Meteorológiai Szolgálat – OMSZ). Meteorológiai Adattár. Elérhető: https://odp.met.hu/climate/homogenized_data/gridded_data_series/daily_data_series/

URL4: Országos Vízügyi Főigazgatóság (OVF). Vízügyi Adattár. Elérhető: https://www.ovf.hu/kozerdeku/adatigenyles

Published
2025-09-14
How to Cite
SzilágyiJ., BáderL., & JózsaJ. (2025). Estimated 1-km resolution monthly land evaporation in Hungary between 2000 and 2022 . Hungarian Journal of Hydrology, 105(3), 4-12. https://doi.org/10.59258/hk.20549
Section
Scientific Papers